886 resultados para Artificial legged locomotion


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An account is given of the fabrication and deployment of artificial reefs used in the SEAFDEC/AQD's Community Fishery Resource Management project, which focused on Malalison Island located in west Central Philippines. The project aimed to apply community-based techniques of fishery resource management through the collaboration of community organizations, biologists and social scientists. The 3 types of reefs (building blocks, concrete pipe culvert, and modified concrete pipe culvert) were deployed at Gui-ob reef covering an area of less than 1 ha.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aspects of the behaviour of three groups of Yunnan snub-nosed langurs, Rhinopithecus bieti, were observed over the course of three field seasons from 1986 to 1988. The major findings of the study were: (1) The habitats of R. bieti were mainly at heights of 3,600-4,150 m above sea level. (2) Groups were very large, with group sizes ranging from more than 100 to 269 individuals. (3) Spatial dispersion densities ranged from about 27 to 106 m2/individual during sleeping and resting, to feeding dispersions as large as 5,000-15,000 m2. (4) The locomotor repertoire of R. bieti consisted largely of walking, jumping and climbing. On very rare occasions, semibrachiation was observed, but true brachiation was never observed. The locomotor repertoires of juveniles were more diverse than those of subadults or adults. (5) Communication consisted mainly of eye-to-eye contact accompanied by murmurs; while loud calls were heard only rarely. (6) Groups moved between sleeping and feeding sites in single file. It is concluded that R. bieti is a mainly terrestrial species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this Brief Report we investigate biomimetic fluid propulsion due to an array of periodically beating artificial cilia. A generic model system is defined in which the effects of inertial fluid forces and the spatial, temporal, and orientational asymmetries of the ciliary motion can be individually controlled. We demonstrate that the so-far unexplored orientational asymmetry plays an important role in generating flow and that the flow increases sharply with Reynolds number and eventually becomes unidirectional. We introduce the concept of configurational symmetry that unifies the spatial, temporal, and orientational symmetries. The breaking of configurational symmetry leads to fluid propulsion in microfluidic channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural cilia are hairlike microtubule-based structures that are able to move fluid on the micrometer scale using asymmetric motion. In this article, we follow a biomimetic approach to design artificial cilia lining the inner surfaces of microfluidic channels with the goal of propelling fluid. The artificial cilia consist of polymer films filled with superparamagnetic nanoparticles, which can mimic the motion of natural cilia when subjected to a rotating magnetic field. To obtain the magnetic field and associated magnetization local to the cilia, we solve the Maxwell equations, from which the magnetic body moments and forces can be deduced. To obtain the ciliary motion, we solve the dynamic equations of motion, which are then fully coupled to the Navier-Stokes equations that describe the fluid flow around the cilia, thus taking full account of fluid inertial forces. The dimensionless parameters that govern the deformation behavior of the cilia and the associated fluid flow are arrived at using the principle of virtual work. The physical response of the cilia and the fluid flow for different combinations of elastic, fluid viscous, and inertia forces are identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we quantitatively analyse the performance of magnetically-driven artificial cilia for lab-on-a-chip applications. The artificial cilia are fabricated using thin polymer films with embedded magnetic nano-particles and their deformation is studied under different external magnetic fields and flows. A coupled magneto-mechanical solid-fluid model that accurately captures the interaction between the magnetic field, cilia and fluid is used to simulate the cilia motion. The elastic and magnetic properties of the cilia are obtained by fitting the results of the computational model to the experimental data. The performance of the artificial cilia with a non-uniform cross-section is characterised using the numerical model for two channel configurations that are of practical importance: an open-loop and a closed-loop channel. We predict that the flow and pressure head generated by the artificial cilia can be as high as 18 microlitres per minute and 3 mm of water, respectively. We also study the effect of metachronal waves on the flow generated and show that the fluid propelled increases drastically compared to synchronously beating cilia, and is unidirectional. This increase is significant even when the phase difference between adjacent cilia is small. The obtained results provide guidelines for the optimal design of magnetically-driven artificial cilia for microfluidic propulsion.