961 resultados para Applied Mathematics|Computer Engineering|Computer science
Resumo:
In this work, we take advantage of association rule mining to support two types of medical systems: the Content-based Image Retrieval (CBIR) systems and the Computer-Aided Diagnosis (CAD) systems. For content-based retrieval, association rules are employed to reduce the dimensionality of the feature vectors that represent the images and to improve the precision of the similarity queries. We refer to the association rule-based method to improve CBIR systems proposed here as Feature selection through Association Rules (FAR). To improve CAD systems, we propose the Image Diagnosis Enhancement through Association rules (IDEA) method. Association rules are employed to suggest a second opinion to the radiologist or a preliminary diagnosis of a new image. A second opinion automatically obtained can either accelerate the process of diagnosing or to strengthen a hypothesis, increasing the probability of a prescribed treatment be successful. Two new algorithms are proposed to support the IDEA method: to pre-process low-level features and to propose a preliminary diagnosis based on association rules. We performed several experiments to validate the proposed methods. The results indicate that association rules can be successfully applied to improve CBIR and CAD systems, empowering the arsenal of techniques to support medical image analysis in medical systems. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The IEEE 754 standard for oating-point arithmetic is widely used in computing. It is based on real arithmetic and is made total by adding both a positive and a negative infinity, a negative zero, and many Not-a-Number (NaN) states. The IEEE infinities are said to have the behaviour of limits. Transreal arithmetic is total. It also has a positive and a negative infinity but no negative zero, and it has a single, unordered number, nullity. We elucidate the transreal tangent and extend real limits to transreal limits. Arguing from this firm foundation, we maintain that there are three category errors in the IEEE 754 standard. Firstly the claim that IEEE infinities are limits of real arithmetic confuses limiting processes with arithmetic. Secondly a defence of IEEE negative zero confuses the limit of a function with the value of a function. Thirdly the definition of IEEE NaNs confuses undefined with unordered. Furthermore we prove that the tangent function, with the infinities given by geometrical con- struction, has a period of an entire rotation, not half a rotation as is commonly understood. This illustrates a category error, confusing the limit with the value of a function, in an important area of applied mathe- matics { trigonometry. We brie y consider the wider implications of this category error. Another paper proposes transreal arithmetic as a basis for floating- point arithmetic; here we take the profound step of proposing transreal arithmetic as a replacement for real arithmetic to remove the possibility of certain category errors in mathematics. Thus we propose both theo- retical and practical advantages of transmathematics. In particular we argue that implementing transreal analysis in trans- floating-point arith- metic would extend the coverage, accuracy and reliability of almost all computer programs that exploit real analysis { essentially all programs in science and engineering and many in finance, medicine and other socially beneficial applications.
Resumo:
eLearning supports the education in certain disciplines. Here, we report about novel eLearning concepts, techniques, and tools to support education in Software Engineering, a subdiscipline of computer science. We call this "Software Engineering eLearning". On the other side, software support is a substantial prerequisite for eLearning in any discipline. Thus, Software Engineering techniques have to be applied to develop and maintain those software systems. We call this "eLearning Software Engineering". Both aspects have been investigated in a large joint, BMBF-funded research project, termed MuSofT (Multimedia in Software Engineering). The main results are summarized in this paper.
Resumo:
The adsorption of simple Lennard-Jones fluids in a carbon slit pore of finite length was studied with Canonical Ensemble (NVT) and Gibbs Ensemble Monte Carlo Simulations (GEMC). The Canonical Ensemble was a collection of cubic simulation boxes in which a finite pore resides, while the Gibbs Ensemble was that of the pore space of the finite pore. Argon was used as a model for Lennard-Jones fluids, while the adsorbent was modelled as a finite carbon slit pore whose two walls were composed of three graphene layers with carbon atoms arranged in a hexagonal pattern. The Lennard-Jones (LJ) 12-6 potential model was used to compute the interaction energy between two fluid particles, and also between a fluid particle and a carbon atom. Argon adsorption isotherms were obtained at 87.3 K for pore widths of 1.0, 1.5 and 2.0 nm using both Canonical and Gibbs Ensembles. These results were compared with isotherms obtained with corresponding infinite pores using Grand Canonical Ensembles. The effects of the number of cycles necessary to reach equilibrium, the initial allocation of particles, the displacement step and the simulation box size were particularly investigated in the Monte Carlo simulation with Canonical Ensembles. Of these parameters, the displacement step had the most significant effect on the performance of the Monte Carlo simulation. The simulation box size was also important, especially at low pressures at which the size must be sufficiently large to have a statistically acceptable number of particles in the bulk phase. Finally, it was found that the Canonical Ensemble and the Gibbs Ensemble both yielded the same isotherm (within statistical error); however, the computation time for GEMC was shorter than that for canonical ensemble simulation. However, the latter method described the proper interface between the reservoir and the adsorbed phase (and hence the meniscus).
Resumo:
The adsorption of Lennard-Jones fluids (argon and nitrogen) onto a graphitized thermal carbon black surface was studied with a Grand Canonical Monte Carlo Simulation (GCMC). The surface was assumed to be finite in length and composed of three graphene layers. When the GCMC simulation was used to describe adsorption on a graphite surface, an over-prediction of the isotherm was consistently observed in the pressure regions where the first and second layers are formed. To remove this over-prediction, surface mediation was accounted for to reduce the fluid-fluid interaction. Do and co-workers have introduced the so-called surface-mediation damping factor to correct the over-prediction for the case of a graphite surface of infinite extent, and this approach has yielded a good description of the adsorption isotherm. In this paper, the effects of the finite size of the graphene layer on the adsorption isotherm and how these would affect the extent of the surface mediation were studied. It was found that this finite-surface model provides a better description of the experimental data for graphitized thermal carbon black of high surface area (i.e. small crystallite size) while the infinite- surface model describes data for carbon black of very low surface area (i.e. large crystallite size).
Resumo:
The need to provide computers with the ability to distinguish the affective state of their users is a major requirement for the practical implementation of affective computing concepts. This dissertation proposes the application of signal processing methods on physiological signals to extract from them features that can be processed by learning pattern recognition systems to provide cues about a person's affective state. In particular, combining physiological information sensed from a user's left hand in a non-invasive way with the pupil diameter information from an eye-tracking system may provide a computer with an awareness of its user's affective responses in the course of human-computer interactions. In this study an integrated hardware-software setup was developed to achieve automatic assessment of the affective status of a computer user. A computer-based "Paced Stroop Test" was designed as a stimulus to elicit emotional stress in the subject during the experiment. Four signals: the Galvanic Skin Response (GSR), the Blood Volume Pulse (BVP), the Skin Temperature (ST) and the Pupil Diameter (PD), were monitored and analyzed to differentiate affective states in the user. Several signal processing techniques were applied on the collected signals to extract their most relevant features. These features were analyzed with learning classification systems, to accomplish the affective state identification. Three learning algorithms: Naïve Bayes, Decision Tree and Support Vector Machine were applied to this identification process and their levels of classification accuracy were compared. The results achieved indicate that the physiological signals monitored do, in fact, have a strong correlation with the changes in the emotional states of the experimental subjects. These results also revealed that the inclusion of pupil diameter information significantly improved the performance of the emotion recognition system. ^
Resumo:
One of the most visionary goals of Artificial Intelligence is to create a system able to mimic and eventually surpass the intelligence observed in biological systems including, ambitiously, the one observed in humans. The main distinctive strength of humans is their ability to build a deep understanding of the world by learning continuously and drawing from their experiences. This ability, which is found in various degrees in all intelligent biological beings, allows them to adapt and properly react to changes by incrementally expanding and refining their knowledge. Arguably, achieving this ability is one of the main goals of Artificial Intelligence and a cornerstone towards the creation of intelligent artificial agents. Modern Deep Learning approaches allowed researchers and industries to achieve great advancements towards the resolution of many long-standing problems in areas like Computer Vision and Natural Language Processing. However, while this current age of renewed interest in AI allowed for the creation of extremely useful applications, a concerningly limited effort is being directed towards the design of systems able to learn continuously. The biggest problem that hinders an AI system from learning incrementally is the catastrophic forgetting phenomenon. This phenomenon, which was discovered in the 90s, naturally occurs in Deep Learning architectures where classic learning paradigms are applied when learning incrementally from a stream of experiences. This dissertation revolves around the Continual Learning field, a sub-field of Machine Learning research that has recently made a comeback following the renewed interest in Deep Learning approaches. This work will focus on a comprehensive view of continual learning by considering algorithmic, benchmarking, and applicative aspects of this field. This dissertation will also touch on community aspects such as the design and creation of research tools aimed at supporting Continual Learning research, and the theoretical and practical aspects concerning public competitions in this field.
Resumo:
A planar k-restricted structure is a simple graph whose blocks are planar and each has at most k vertices. Planar k-restricted structures are used by approximation algorithms for Maximum Weight Planar Subgraph, which motivates this work. The planar k-restricted ratio is the infimum, over simple planar graphs H, of the ratio of the number of edges in a maximum k-restricted structure subgraph of H to the number edges of H. We prove that, as k tends to infinity, the planar k-restricted ratio tends to 1/2. The same result holds for the weighted version. Our results are based on analyzing the analogous ratios for outerplanar and weighted outerplanar graphs. Here both ratios tend to 1 as k goes to infinity, and we provide good estimates of the rates of convergence, showing that they differ in the weighted from the unweighted case.
Resumo:
We simplify the known formula for the asymptotic estimate of the number of deterministic and accessible automata with n states over a k-letter alphabet. The proof relies on the theory of Lagrange inversion applied in the context of generalized binomial series.
Resumo:
This work proposes a method based on both preprocessing and data mining with the objective of identify harmonic current sources in residential consumers. In addition, this methodology can also be applied to identify linear and nonlinear loads. It should be emphasized that the entire database was obtained through laboratory essays, i.e., real data were acquired from residential loads. Thus, the residential system created in laboratory was fed by a configurable power source and in its output were placed the loads and the power quality analyzers (all measurements were stored in a microcomputer). So, the data were submitted to pre-processing, which was based on attribute selection techniques in order to minimize the complexity in identifying the loads. A newer database was generated maintaining only the attributes selected, thus, Artificial Neural Networks were trained to realized the identification of loads. In order to validate the methodology proposed, the loads were fed both under ideal conditions (without harmonics), but also by harmonic voltages within limits pre-established. These limits are in accordance with IEEE Std. 519-1992 and PRODIST (procedures to delivery energy employed by Brazilian`s utilities). The results obtained seek to validate the methodology proposed and furnish a method that can serve as alternative to conventional methods.
Resumo:
This study presents a solid-like finite element formulation to solve geometric non-linear three-dimensional inhomogeneous frames. To achieve the desired representation, unconstrained vectors are used instead of the classic rigid director triad; as a consequence, the resulting formulation does not use finite rotation schemes. High order curved elements with any cross section are developed using a full three-dimensional constitutive elastic relation. Warping and variable thickness strain modes are introduced to avoid locking. The warping mode is solved numerically in FEM pre-processing computational code, which is coupled to the main program. The extra calculations are relatively small when the number of finite elements. with the same cross section, increases. The warping mode is based on a 2D free torsion (Saint-Venant) problem that considers inhomogeneous material. A scheme that automatically generates shape functions and its derivatives allow the use of any degree of approximation for the developed frame element. General examples are solved to check the objectivity, path independence, locking free behavior, generality and accuracy of the proposed formulation. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a domain boundary element formulation for inelastic saturated porous media with rate-independent behavior for the solid skeleton. The formulation is then applied to elastic-plastic behavior for the solid. Biot`s consolidation theory, extended to include irreversible phenomena is considered and the direct boundary element technique is used for the numerical solution after time discretization by the implicit Euler backward algorithm. The associated nonlinear algebraic problem is solved by the Newton-Raphson procedure whereby the loading/unloading conditions are fully taken into account and the consistent tangent operator defined. Only domain nodes (nodes defined inside the domain) are used to represent all domain values and the corresponding integrals are computed by using an accurate sub-elementation scheme. The developments are illustrated through the Drucker-Prager elastic-plastic model for the solid skeleton and various examples are analyzed with the proposed algorithms. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
This work presents, with the aid of the natural approach, an extension of the force density method for the initial shape finding of cable and membrane structures, which leads to the solution of a system of linear equations. This method, here called the natural force density method, preserves the linearity which characterizes the original force density method. At the same time, it overcomes the difficulties that the original procedure presents to cope with irregular triangular finite element meshes. Furthermore, if this method is applied iteratively in the lines prescribed herewith, it leads to a viable initial configuration with a uniform, isotropic plane Cauchy stress state. This means that a minimal surface for the membrane can be achieved through a succession of equilibrated configurations. Several numerical examples illustrate the simplicity and robustness of the method. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This work deals with the problem of minimizing the waste of space that occurs on a rotational placement of a set of irregular two dimensional polygons inside a two dimensional container. This problem is approached with an heuristic based on simulated annealing. Traditional 14 external penalization"" techniques are avoided through the application of the no-fit polygon, that determinates the collision free area for each polygon before its placement. The simulated annealing controls: the rotation applied, the placement and the sequence of placement of the polygons. For each non placed polygon, a limited depth binary search is performed to find a scale factor that when applied to the polygon, would allow it to be fitted in the container. It is proposed a crystallization heuristic, in order to increase the number of accepted solutions. The bottom left and larger first deterministic heuristics were also studied. The proposed process is suited for non convex polygons and containers, the containers can have holes inside. (C) 2009 Elsevier Ltd. All rights reserved.