986 resultados para Antimicrobial Peptide Hepcidin
Resumo:
Objective: In 2011, the Australian Commission on Safety and Quality in Health Care (ACSQHC) recommended that all hospitals in Australia must have an Antimicrobial Stewardship (AMS) program by 2013. Nevertheless, little is known about current AMS activities. This study aimed to determine the AMS activities currently undertaken, and to identify gaps, barriers to implementation and opportunities for improvement in Queensland hospitals. Methods: The AMS activities of 26 facilities from 15 hospital and health services in Queensland were surveyed during June 2012 to address strategies for effective AMS: implementing clinical guidelines, formulary restriction, reviewing antimicrobial prescribing, auditing antimicrobial use and selective reporting of susceptibility results. Results: The response rate was 62%. Nineteen percent had an AMS team (a dedicated multidisciplinary team consisting of a medically trained staff member and a pharmacist). All facilities had access to an electronic version of Therapeutic Guidelines: Antibiotic, with a further 50% developing local guidelines for antimicrobials. One-third of facilities had additional restrictions. Eighty-eight percent had advice for restricted antimicrobials from in-house infectious disease physicians or clinical microbiologists. Antimicrobials were monitored with feedback given to prescribers at point of care by 76% of facilities. Deficiencies reported as barriers to establishing AMS programs included: pharmacy resources, financial support by hospital management, and training and education in antimicrobial use. Conclusions: Several areas for improvement were identified: reviewing antimicrobial prescribing with feedback to the prescriber, auditing, and training and education in antimicrobial use. There also appears to be a lack of resources to support AMS programs in some facilities. What is known about the topic? The ACSQHC has recommended that all hospitals implement an AMS program by 2013 as a requirement of Standard 3 (Preventing and Controlling Healthcare-Associated Infections) of the National Safety and Quality Health Service Standards. The intent of AMS is to ensure appropriate prescribing of antimicrobials as part of the broader systems within a health service organisation to prevent and manage healthcare-associated infections, and improve patient safety and quality of care. This criterion also aligns closely with Standard 4: Medication Safety. Despite this recommendation, little is known about what AMS activities are undertaken in these facilities and what additional resources would be required in order to meet these national standards. What does the paper add? This is the first survey that has been conducted of public hospital and health services in Queensland, a large decentralised state in Australia. This paper describes what AMS activities are currently being undertaken, identifies practice gaps, barriers to implementation and opportunities for improvement in Queensland hospitals. What are the implications for practitioners? Several areas for improvement such as reviewing antimicrobial prescribing with feedback to the prescriber, auditing, and training and education in antimicrobial use have been identified. In addition, there appears to be a lack of resources to support AMS programs in some facilities.
Resumo:
The availability of synthetic peptides has paved the way for their use in tailor-made interactions with biomolecules. In this study, a 16mer LacI-based peptide was used as an affinity ligand to examine the scale up feasibility for plasmid DNA purification. First, the peptide was designed and characterized for the affinity purification of lacO containing plasmid DNA, to be employed as a high affinity ligand for the potential capturing of plasmid DNA in a single unit operation. It was found there were no discernible interactions with a control plasmid that did not encode the lacO nucleotide sequence. The dissociation equilibrium constant of the binding between the 16mer peptide and target pUC19 was 5.0 ± 0.5 × 10-8 M as assessed by surface plasmon resonance. This selectivity and moderated affinity indicate that the 16mer is suitable for the adsorption and chromatographic purification of plasmid DNA. The suitability of this peptide was then evaluated using a chromatography system with the 16mer peptide immobilized to a customized monolith to purify plasmid DNA, obtaining preferential purification of supercoiled pUC19. The results demonstrate the applicability of peptide-monolith supports to scale up the purification process for plasmid DNA using designed ligands via a biomimetic approach.
Resumo:
Single step affinity chromatography was employed for the purification of plasmid DNA (pDNA), thus eliminating several steps compared with current commercial purification methods for pDNA. Significant reduction in pDNA production time and cost was obtained. This chromatographic operation employed a peptide-monolith construct to isolate pDNA from Escherichia coli (E. coli) impurities present in a clarified lysate feedstock. Mild conditions were applied to avoid any degradation of pDNA. The effect of some important parameters on pDNA yield was also evaluated with the aim of optimising the affinity purification of pDNA. The results demonstrate that 81% of pDNA was recovered and contaminating gDNA, RNA and protein were removed below detectable levels. © 2008 Elsevier B.V. All rights reserved.
Resumo:
There is an increasing need in biology and clinical medicine to robustly and reliably measure tens-to-hundreds of peptides and proteins in clinical and biological samples with high sensitivity, specificity, reproducibility and repeatability. Previously, we demonstrated that LC-MRM-MS with isotope dilution has suitable performance for quantitative measurements of small numbers of relatively abundant proteins in human plasma, and that the resulting assays can be transferred across laboratories while maintaining high reproducibility and quantitative precision. Here we significantly extend that earlier work, demonstrating that 11 laboratories using 14 LC-MS systems can develop, determine analytical figures of merit, and apply highly multiplexed MRM-MS assays targeting 125 peptides derived from 27 cancer-relevant proteins and 7 control proteins to precisely and reproducibly measure the analytes in human plasma. To ensure consistent generation of high quality data we incorporated a system suitability protocol (SSP) into our experimental design. The SSP enabled real-time monitoring of LC-MRM-MS performance during assay development and implementation, facilitating early detection and correction of chromatographic and instrumental problems. Low to sub-nanogram/mL sensitivity for proteins in plasma was achieved by one-step immunoaffinity depletion of 14 abundant plasma proteins prior to analysis. Median intra- and inter-laboratory reproducibility was <20%, sufficient for most biological studies and candidate protein biomarker verification. Digestion recovery of peptides was assessed and quantitative accuracy improved using heavy isotope labeled versions of the proteins as internal standards. Using the highly multiplexed assay, participating laboratories were able to precisely and reproducibly determine the levels of a series of analytes in blinded samples used to simulate an inter-laboratory clinical study of patient samples. Our study further establishes that LC-MRM-MS using stable isotope dilution, with appropriate attention to analytical validation and appropriate quality c`ontrol measures, enables sensitive, specific, reproducible and quantitative measurements of proteins and peptides in complex biological matrices such as plasma.
Resumo:
Chronic wounds, often associated with venous and arterial ulcers, diabetes and pressure sores, is an area of great concern. In Australia, the cost of treating chronic wounds is conservatively estimated at $285 million/annum for the treatment of pressure ulcers and $654 million annually for the treatment and management of leg ulcers. Current figures indicate that more than seven million people suffer from chronic wounds worldwide with Australians accounting for approximately 600,000 of this number. Bacterial infection of the wound site is a major issue as contamination of a chronic wound with methicillin-resistant Staphylococcus aureus (MRSA) significantly delays wound healing. Further, once systemic, current antibiotic therapies capable of treating the infection are limited. Aboriginal bush medicine has been used for thousands of years for the treatment of wounds and sores. Hence, we selected a native Australian plant to evaluate its bactericidal activity against MRSA.
Resumo:
Ghrelin and leptin are key peripherally secreted appetite-regulating hormones in vertebrates. Here we consider the ghrelin gene (GHRL) of birds (class Aves), where it has been reported that ghrelin inhibits rather than augments feeding. Thirty-one bird species were compared, revealing that most species harbour a functional copy of GHRL and the coding region for its derived peptides ghrelin and obestatin. We provide evidence for loss of GHRL in saker and peregrine falcons, and this is likely to result from the insertion of an ERVK retrotransposon in intron 0. We hypothesise that the loss of anorexigenic ghrelin is a predatory adaptation that results in increased food-seeking behaviour and feeding in falcons.
Resumo:
Increased permeability of blood vessels is an indicator for various injuries and diseases, including multiple sclerosis (MS), of the central nervous system. Nanoparticles have the potential to deliver drugs locally to sites of tissue damage, reducing the drug administered and limiting associated side effects, but efficient accumulation still remains a challenge. We developed peptide-functionalized polymeric nanoparticles to target blood clots and the extracellular matrix molecule nidogen, which are associated with areas of tissue damage. Using the induction of experimental autoimmune encephalomyelitis in rats to provide a model of MS associated with tissue damage and blood vessel lesions, all targeted nanoparticles were delivered systemically. In vivo data demonstrates enhanced accumulation of peptide functionalized nanoparticles at the injury site compared to scrambled and naive controls, particularly for nanoparticles functionalized to target fibrin clots. This suggests that further investigations with drug laden, peptide functionalized nanoparticles might be of particular interest in the development of treatment strategies for MS.
Resumo:
Objectives: There is little evidence and few guidelines to inform the most appropriate dosing and monitoring for antimicrobials in the ICU. We aimed to survey current practices around the world. Methods: An online structured questionnaire was developed and sent by e-mail to obtain information on local antimicrobial prescribing practices for glycopeptides, piperacillin/tazobactam, carbapenems, aminoglycosides and colistin. Results: A total of 402 professionals from 328 hospitals in 53 countries responded, of whom 78% were specialists in intensive care medicine (41% intensive care, 30% anaesthesiology, 14% internal medicine) and 12% were pharmacists. Vancomycin was used as a continuous infusion in 31% of units at a median (IQR) daily dose of 25 (25–30) mg/kg. Piperacillin/tazobactam was used as an extended infusion by 22% and as a continuous infusion by 7%. An extended infusion of carbapenem (meropenem or imipenem) was used by 27% and a continuous infusion by 5%. Colistin was used at a daily dose of 7.5 (3.9–9) million IU (MIU)/day, predominantly as a short infusion. The most commonly used aminoglycosides were gentamicin (55%) followed by amikacin (40%), with administration as a single daily dose reported in 94% of the cases. Gentamicin was used at a daily dose of 5 (5–6) mg/day and amikacin at a daily dose of 15 (15–20) mg/day. Therapeutic drug monitoring of vancomycin, piperacillin/tazobactam and meropenem was used by 74%, 1% and 2% of the respondents, respectively. Peak aminoglycoside concentrations were sampled daily by 28% and trough concentrations in all patients by 61% of the respondents. Conclusions: We found wide variability in reported practices for antibiotic dosing and monitoring. Research is required to develop evidence-based guidelines to standardize practices.
Resumo:
Patients with rheumatoid arthritis (RA) have a significantly higher risk of coronary heart disease, despite being less likely to report symptoms of angina, and are more likely to experience unrecognised myocardial infarction and sudden cardiac death than non-RA controls.1 Furthermore, left ventricular diastolic dysfunction has been described in up to 40% of patients with RA.2...
Resumo:
The aim of this study was to investigate the molecular basis of human IgE-allergen interaction by screening a phage-displayed peptide library with an allergen-specific human IgE-mimicking monoclonal antibody (mAb). A mAb that reacted with major grass pollen allergens was successfully identified and shown to inhibit human IgE-allergen interaction. Biopanning of a phage-displayed random peptide library with this mAb yielded a 12 amino acid long mimotope. A synthetic peptide based on this 12-mer mimotope inhibited mAb and human IgE binding to grass pollen extracts. Our results indicate that such synthetic peptide mimotopes of allergens have potential as novel therapeutic agents. © 2001 Published by Elsevier Science B.V. on behalf of the Federation of European Biochemical Societies.
Resumo:
The major diabetes autoantigen, glutamic acid decarboxylase (GAD65), contains a region of sequence similarity, including six identical residues PEVKEK, to the P2C protein of coxsackie B virus, suggesting that cross-reactivity between coxsackie B virus and GAD65 can initiate autoimmune diabetes. We used the human islet cell mAbs MICA3 and MICA4 to identify the Ab epitopes of GAD65 by screening phage-displayed random peptide libraries. The identified peptide sequences could be mapped to a homology model of the pyridoxal phosphate (PLP) binding domain of GAD65. For MICA3, a surface loop containing the sequence PEVKEK and two adjacent exposed helixes were identified in the PLP binding domain as well as a region of the C terminus of GAD65 that has previously been identified as critical for MICA3 binding. To confirm that the loop containing tile PEVKEK sequence contributes to the MICA3 epitope, this loop was deleted by mutagenesis. This reduced binding of MICA3 by 70%. Peptide sequences selected using MICA4 were rich in basic or hydroxyl-containing amino acids, and the surface of the GAD65 PLP-binding domain surrounding Lys358, which is known to be critical for MICA4 binding, was likewise rich in these amino acids. Also, the two phage most reactive width MICA4 encoded the motif VALxG, and the reverse of this sequence, LAV, was located in this same region. Thus, we have defined the MICA3 and MICA4 epitopes on GAD65 using the combination of phage display, molecular modeling, and mutagenesis and have provided compelling evidence for the involvement of the PEVKEK loop in the MICA3 epitope.
Resumo:
The chemokine receptor CCR5 contains seven transmembrane-spanning domains. It binds chemokines and acts as co-receptor for macrophage (m)-tropic (or R5) strains of HIV-1. Monoclonal antibodies (mAb) to CCR5, 3A9 and 5C7, were used for biopanning a nonapeptide cysteine (C)-constrained phage-displayed random peptide library to ascertain contact residues and define tertiary structures of possible epitopes on CCR5. Reactivity of antibodies with phagotopes was established by enzyme-linked immunosorbent assay (ELISA). mAb 3A9 identified a phagotope C-HASIYDFGS-C (3A9/1), and 5C7 most frequently identified C-PHWLRDLRV-C (5C7/1). Corresponding peptides were synthesized. Phagotopes and synthetic peptides reacted in ELISA with corresponding antibodies and synthetic peptides inhibited antibody binding to the phagotopes. Reactivity by immunofluorescence of 3A9 with CCR5 was strongly inhibited by the corresponding peptide. Both mAb 3A9 and 5C7 reacted similarly with phagotopes and the corresponding peptide selected by the alternative mAb. The sequences of peptide inserts of phagotopes could be aligned as mimotopes of the sequence of CCR5. For phage 3A9/1, the motif SIYD aligned to residues at the N terminus and FG to residues on the first extracellular loop; for 5C7/1, residues at the N terminus, first extracellular loop, and possibly the third extracellular loop could be aligned and so would contribute to the mimotope. The synthetic peptides corresponding to the isolated phagotopes showed a CD4-dependent reactivity with gp120 of a primary, m-tropic HIV-1 isolate. Thus reactivity of antibodies raised to CCR5 against phage-displayed peptides defined mimotopes that reflect binding sites for these antibodies and reveal a part of the gp120 binding sites on CCR5.
Resumo:
Ross River virus (RRV) is the predominant cause of epidemic polyarthritis in Australia, yet the antigenic determinants are not well defined. We aimed to characterize epitope(s) on RRV-E2 for a panel of monoclonal antibodies (MAbs) that recognize overlapping conformational epitopes on the E2 envelope protein of RRV and that neutralize virus infection of cells in vitro. Phage-displayed random peptide libraries were probed with the MAbs T1E7, NB3C4, and T10C9 using solution-phase and solid-phase biopanning methods. The peptides VSIFPPA and KTAISPT were selected 15 and 6 times, respectively, by all three of the MAbs using solution-phase biopanning. The peptide LRLPPAP was selected 8 times by NB3C4 using solid-phase biopanning; this peptide shares a trio of amino acids with the peptide VSIFPPA. Phage that expressed the peptides VSIFPPA and LRLPPAP were reactive with T1E7 and/or NB3C4, and phage that expressed the peptides VSIFPPA, LRLPPAP, and KTAISPT partially inhibited the reactivity of T1E7 with RRV. The selected peptides resemble regions of RRV-E2 adjacent to sites mutated in neutralization escape variants of RRV derived by culture in the presence of these MAbs (E2 210-219 and 238-245) and an additional region of E2 172-182. Together these sites represent a conformational epitope of E2 that is informative of cellular contact sites on RRV.
Resumo:
Biopanning of phage-displayed random peptide libraries is a powerful technique for identifying peptides that mimic epitopes (mimotopes) for monoclonal antibodies (mAbs). However, peptides derived using polyclonal antisera may represent epitopes for a diverse range of antibodies. Hence following screening of phage libraries with polyclonal antisera, including autoimmune disease sera, a procedure is required to distinguish relevant from irrelevant phagotopes. We therefore applied the multiple sequence alignment algorithm PILEUP together with a matrix for scoring amino acid substitutions based on physicochemical properties to generate guide trees depicting relatedness of selected peptides. A random heptapeptide library was biopanned nine times using no selecting antibodies, immunoglobulin G (IgG) from sera of subjects with autoimmune diseases (primary biliary cirrhosis (PBC) and type 1 diabetes) and three murine ascites fluids that contained mAbs to overlapping epitope(s) on the Ross River Virus envelope protein 2. Peptides randomly sampled from the library were distributed throughout the guide tree of the total set of peptides whilst many of the peptides derived in the absence of selecting antibody aligned to a single cluster. Moreover peptides selected by different sources of IgG aligned to separate clusters, each with a different amino acid motif. These alignments were validated by testing all of the 53 phagotopes derived using IgG from PBC sera for reactivity by capture ELISA with antibodies affinity purified on the E2 subunit of the pyruvate dehydrogenase complex (PDC-E2), the major autoantigen in PBC: only those phagotopes that aligned to PBC-associated clusters were reactive. Hence the multiple sequence alignment procedure discriminates relevant from irrelevant phagotopes and thus a major difficulty with biopanning phage-displayed random peptide libraries with polyclonal antibodies is surmounted.