903 resultados para Antennas and Propagation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A frequency selective surface (FSS) which can be utilized as a diplexer for circular polarization (CP) applications is proposed. The structure consists of two dipole-based FSS placed parallel to each other. The dipoles in one array are rotated by 90° with respect to those in the other. For an angle of incidence of 45° at one frequency band the structure allows a CP signal to be transmitted while at a further band it converts a linearly polarized (LP) signal to CP upon reflection. Full-wave simulation results validated the concept.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Directional Modulation (DM) is a recently proposed technique for securing wireless communication. In this paper we point out that modulation-directionality is a consequence of varying the beamforming network, either in baseband or in the RF stage, at the information rate In order to formalize and extend on previous analysis and synthesis methods a new theoretical treatment using vector representations of directional modulation (DM) systems is introduced and used to obtain the necessary and sufficient con

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reconfigurable bistate metasurfaces composed of interwoven spiral arrays with embedded pin diodes are proposed for single and dual polarisation operation. The switching capability is enabled by pin diodes that change the array response between transmission and reflection modes at the specified frequencies. The spiral conductors forming the metasurface also supply the dc bias for controlling pin diodes, thus avoiding the need of additional bias circuitry that can cause parasitic interference and affect the metasurface response. The simulation results show that proposed active metasurfaces exhibit good isolation between transmission and reflection states, while retaining excellent angular and polarisation stability with the large fractional bandwidth (FBW) inherent to the original passive arrays. © 2014 A. Vallecchi et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we investigate the first order characteristics of the radio channel between a moving vehicle and a stationary person positioned by the side of a road at 5.8 GHz. The experiments considered a transmitter positioned at different locations on both the body and receivers positioned on the vehicle. The transmitter was alternated between positions on the central chest region, back and the wrist (facing the roadside) of the body, with the receivers placed on the outside roof, the outside rear window and the inside dashboard of the vehicle. The Rice fading model was applied to the measurement data to assess its suitability for characterizing this emerging type of wireless channel. The Ricean K factors calculated from the data suggest that a significant dominant component existed in the majority of the channels considered in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we investigate the potential improvement in signal reliability for indoor off-body communications when using spatial diversity at the base station. In particular, we utilize two hypothetical indoor base stations operating at 5.8 GHz each featuring four antennas which are spaced at either half- or one-wavelength apart. Three on-body locations are considered along with four types of user movement. The cross-correlation between the received signal envelopes observed at each base station antenna element was calculated and found to be always less than 0.5. Selection, maximal ratio, and equal gain combining of the received signal has shown that the greatest improvement is obtained when the user is mobile, with a maximum diversity gain of 11.34 dB achievable when using a four branch receiver. To model the fading envelope obtained at the output of the virtual combiners, we use diversity specific, theoretical probability density functions for multi-branch receivers operating in Nakagami-m fading channels. It is shown that these equations provide an excellent fit to the measured channel data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the results of a measurement campaign aimed at characterizing and modeling the indoor radio channel between two hypothetical cellular handsets. The device-to-device channel measurements were made at 868 MHz and investigated a number of different everyday scenarios such as the devices being held at the user's heads, placed in a pocket and one of the devices placed on a desktop. The recently proposed shadowed k-μ fading model was used to characterize these channels and was shown to provide a good description of the measured data. It was also evident from the experiments, that the device-to-device communications channel is susceptible to shadowing caused by the human body.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we investigate the received signal characteristics of on-body communications channels at 2.45 GHz. The hypothetical body area network configuration considered a transmitter node situated on the person’s left waist and receiving nodes positioned on the head, knee and wrist of the person’s right side. The on-body channel measurements were performed in both anechoic and reverberant environments while the person was moving. It was found that the recently proposed shadowed κ‒μ fading model provided an excellent fit to the measured data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a number of outdoor body-to-body communications channels at 2.45 GHz which are deemed to be susceptible to shadowed fading are analyzed. The newlyproposed shadowed K-Il model is used to characterize thesechannels. Its probability density function is shown to provide an improved fit to the distribution of the signal fading compared to established models such as lognormal, Nakagamiand Rice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents the design of a thin electromagnetic absorber which exhibits radar backscatter suppression that is independent of the wave polarisation at large incidence angles. The structure consists of a metal backed printed frequency selective surface (FSS), with resistors placed across narrow gaps inserted in the middle of each of the four sides of the conductor loops. The geometry of the periodic array and the value of the vertical and horizontal resistor pairs are carefully chosen to present a real impedance of 377 Ω at the centre operating frequency for both TE and TM polarised waves. Angular sensitivity and reflectivity bandwidth have been investigated for FSS absorber designs with thicknesses of 1, 2 and 3 mm. Each of the three structures was optimised to work at a centre frequency of 10 GHz and an incident angle of 45°. The design methodology is verified by measuring the radar backscatter suppression from a 3 mm (l / 10) thick screen in the frequency range 8–12 GHz. The absorber construction was simplified by filling the four metal gaps in each unit cell with shielding paint, and selecting the ink thickness to give the two required surface resistance values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The propagation of UWB signals for body-centric communications within a modern classroom/conference room environment was investigated. Presented results demonstrate that the body-antenna mounting position has a marked impact on the received power levels and positioning the antenna on the chest as opposed to the shoulder or wrist creates more extreme values in receive power, mean excess delay and rms delay spread. Additionally, the best fit models for each scenario are presented and highlight the difference between the chest and other compared antenna locations. The work concluded that the chest is a poor choice of mounting position for the antenna due to significant body shadowing effects, with the wrist or shoulder considered better options for UWB systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A low-profile wearable antenna suitable for integration into low-cost, disposable medical vital signs monitors is presented. Simulated and measured antenna performance was characterized on a layered human tissue phantom, representative of the thorax region of a range of human bodies. The wearable antenna has sufficient bandwidth for the 868 MHz Industrial, Scientific and Medical frequency band. Wearable radiation efficiency of up to 30 % is reported when mounted in close proximity to the novel human tissue phantom antenna test-bed at 868 MHz.