995 resultados para Anodic formation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we consider a decentralized supply chain formation problem for linear multi-echelon supply chains when the managers of the individual echelons are autonomous, rational, and intelligent. At each echelon, there is a choice of service providers and the specific problem we solve is that of determining a cost-optimal mix of service providers so as to achieve a desired level of end-to-end delivery performance. The problem can be broken up into two sub-problems following a mechanism design approach: (1) Design of an incentive compatible mechanism to elicit the true cost functions from the echelon managers; (2) Formulation and solution of an appropriate optimization problem using the true cost information. In this paper we propose a novel Bayesian incentive compatible mechanism for eliciting the true cost functions. This improves upon existing solutions in the literature which are all based on the classical Vickrey-Clarke-Groves mechanisms, requiring significant incentives to be paid to the echelon managers for achieving dominant strategy incentive compatibility. The proposed solution, which we call SCF-BIC (Supply Chain Formation with Bayesian Incentive Compatibility), significantly reduces the cost of supply chain formation. We illustrate the efficacy of the proposed methodology using the example of a three echelon manufacturing supply chain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we address the problem of forming procurement networks for items with value adding stages that are linearly arranged. Formation of such procurement networks involves a bottom-up assembly of complex production, assembly, and exchange relationships through supplier selection and contracting decisions. Recent research in supply chain management has emphasized that such decisions need to take into account the fact that suppliers and buyers are intelligent and rational agents who act strategically. In this paper, we view the problem of Procurement Network Formation (PNF) for multiple units of a single item as a cooperative game where agents cooperate to form a surplus maximizing procurement network and then share the surplus in a fair manner. We study the implications of using the Shapley value as a solution concept for forming such procurement networks. We also present a protocol, based on the extensive form game realization of the Shapley value, for forming these networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chloromethylfurfural (CMF), a valuable intermediate for the production of chemicals and fuel, can be derived in high yields from the cellulose component of biomass. This study examined the effect of sugar cane bagasse components and biomass architecture on CMF/bio-oil yield using a HCl/dichloroethane biphasic system. The type of pretreatment affected bio-oil yield, as the CMF yield increased with increasing glucan content. CMF yield reached 81.9% with bagasse pretreated by acidified aqueous ionic liquid, which had a glucan content of 81.6%. The lignin content of the biomass was found to significantly reduce CMF yield, which was only 62.3% with acid-catalysed steam exploded sample having a lignin content of 29.6%. The change of CMF yield may be associated with fibre surface changes as a result of pretreatment. The hemicellulose content also impacted negatively on CMF yield. Storage of the bio-oil in chlorinated solvents prevented CMF degradation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Examples of 3D cadmium thiosulfate based inorganic-organic hybrid compounds have been shown to be active photocatalysts using sunlight.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of an ω-Al7Cu2Fe phase during laser cladding of quasicrystal-forming Al65Cu23.3Fe11.7 alloy on a pure aluminium substrate is reported. This phase is found to nucleate at the periphery of primary icosahedral-phase particles. A large number of ω-phase particles form an envelope around the icosahedral phase. On the outer side, they form an interface with an agr-Al solid solution. Detailed transmission electron microscopic observations show that the ω phase exhibits an orientation relationship with the icosahedral phase. Analysis of experimental results suggests that the ω phase forms by precipitation on an icosahedral phase by heterogeneous nucleation and grows into the aluminium-rich melt until supersaturation is exhausted. The microstructural observations are explained in terms of available models of phase transformations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the measurements of Alcock and Zador, Grundy et al. estimated an uncertainty of the order of +/- 5 kJ mol(-1) for the standard Gibbs energy of formation of MnO in a recent assessment. Since the evaluation of thermodynamic data for the higher oxides Mn3O4, Mn2O3, and MnO2 depends on values for MnO, a redetermination of its Gibbs energy of formation was undertaken in the temperature range from 875 to 1300 K using a solid-state electrochemical cell incorporating yttria-doped thoria (YDT) as the solid electrolyte and Fe + Fe1-delta O as the reference electrode. The cell can be presented as Pt, Mn + MnO/YDT/Fe + Fe1+delta O, Pt Since the metals Fe and Mn undergo phase transitions in the temperature range of measurement, the reversible emf of the cell is represented by the three linear segments. Combining the emf with the oxygen potential for the reference electrode, the standard Gibbs energy of formation of MnO from alpha-Mn and gaseous diatomic oxygen in the temperature range from 875 to 980 K is obtained as: Delta G(f)(o)/Jmol(-1)(+/- 250) = -385624 + 73.071T From 980 to 1300 K the Gibbs energy of formation of MnO from beta-Mn and oxygen gas is given by: Delta G(f)(o)/Jmol(-1)(+/- 250) = -387850 + 75.36T The new data are in excellent agreement with the earlier measurements of Alcock and Zador. Grundy et al. incorrectly analyzed the data of Alcock and Zador showing relatively large difference (+/- 5 kJ mol(-1)) in Gibbs energies of MnO from their two cells with Fe + Fe1-delta O and Ni + NiO as reference electrodes. Thermodynamic data for MnO is reassessed in the light of the new measurements. A table of refined thermodynamic data for MnO from 298.15 to 2000 K is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An Ocean General Circulation Model of the Indian Ocean with high horizontal (0.25 degrees x 0.25 degrees) and vertical (40 levels) resolutions is used to study the dynamics and thermodynamics of the Arabian Sea mini warm pool (ASMWP), the warmest region in the northern Indian Ocean during January-April. The model simulates the seasonal cycle of temperature, salinity and currents as well as the winter time temperature inversions in the southeastern Arabian Sea (SEAS) quite realistically with climatological forcing. An experiment which maintained uniform salinity of 35 psu over the entire model domain reproduces the ASMWP similar to the control run with realistic salinity and this is contrary to the existing theories that stratification caused by the intrusion of low-salinity water from the Bay of Bengal into the SEAS is crucial for the formation of ASMWP. The contribution from temperature inversions to the warming of the SEAS is found to be negligible. Experiments with modified atmospheric forcing over the SEAS show that the low latent heat loss over the SEAS compared to the surroundings, resulting from the low winds due to the orographic effect of Western Ghats, plays an important role in setting up the sea surface temperature (SST) distribution over the SEAS during November March. During March-May, the SEAS responds quickly to the air-sea fluxes and the peak SST during April-May is independent of the SST evolution during previous months. The SEAS behaves as a low wind, heat-dominated regime during November-May and, therefore, the formation and maintenance of the ASMWP is not dependent on the near surface stratification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface texture of harder mating surfaces plays an important role during sliding against softer materials and hence the importance of characterizing the surfaces in terms of roughness parameters. In the present investigation, basic studies were conducted using inclined pin-on-plate sliding tester to understand the surface texture effect of hard surfaces on coefficient of friction and transfer layer formation. A tribological couple made of a super purity aluminium pin against steel plate was used in the tests. Two surface parameters of steel plates, namely roughness and texture, were varied in the tests. It was observed that the transfer layer formation and the coefficient of friction along with its two components, namely, the adhesion and plowing, are controlled by the surface texture and are independent of surface roughness (R-a). Among the various surface roughness parameters, the average or the mean slope of the profile was found to explain the variations best. Under lubricated conditions, stick-slip phenomena was observed, the amplitude of which depends on the plowing component of friction. The presence of stick-slip motion under lubricated conditions could be attributed to the molecular deformation of the lubricant component confined between asperities. (C) 2009 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, solidification of a hyper-eutectic ammonium chloride solution in a bottom-cooled cavity (i.e. with stable thermal gradient) is numerically studied. A Rayleigh number based criterion is developed, which determines the conditions favorable for freckles formation. This criterion, when expressed in terms of physical properties and process parameters, yields the condition for plume formation as a function of concentration, liquid fraction, permeability, growth rate of a mushy layer and thermophysical properties. Subsequently, numerical simulations are performed for cases with initial and boundary conditions favoring freckle formation. The effects of parameters, such as cooling rate and initial concentration, on the formation and growth of freckles are investigated. It was found that a high cooling rate produced larger and more defined channels which are retained for a longer durations. Similarly, a lower initial concentration of solute resulted in fewer but more pronounced channels. The number and size of channels are also found to be related to the mushy zone thickness. The trends predicted with regard to the variation of number of channels with time under different process conditions are in accordance with the experimental observations reported in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is widely accepted that the global climate is heating up due to human activities, such as burning of fossil fuels. Therefore we find ourselves forced to make decisions on what measures, if any, need to be taken to decrease our warming effect on the planet before any irrevocable damage occurs. Research is being conducted in a variety of fields to better understand all relevant processes governing Earth s climate, and to assess the relative roles of anthropogenic and biogenic emissions into the atmosphere. One of the least well quantified problems is the impact of small aerosol particles (both of anthropogenic and biogenic origin) on climate, through reflecting solar radiation and their ability to act as condensation nuclei for cloud droplets. In this thesis, the compounds driving the biogenic formation of new particles in the atmosphere have been examined through detailed measurements. As directly measuring the composition of these newly formed particles is extremely difficult, the approach was to indirectly study their different characteristics by measuring the hygroscopicity (water uptake) and volatility (evaporation) of particles between 10 and 50 nm. To study the first steps of the formation process in the sub-3 nm range, the nucleation of gaseous precursors to small clusters, the chemical composition of ambient naturally charged ions were measured. The ion measurements were performed with a newly developed mass spectrometer, which was first characterized in the laboratory before being deployed at a boreal forest measurement site. It was also successfully compared to similar, low-resolution instruments. The ambient measurements showed that sulfuric acid clusters dominate the negative ion spectrum during new particle formation events. Sulfuric acid/ammonia clusters were detected in ambient air for the first time in this work. Even though sulfuric acid is believed to be the most important gas phase precursor driving the initial cluster formation, measurements of the hygroscopicity and volatility of growing 10-50 nm particles in Hyytiälä showed an increasing role of organic vapors of a variety of oxidation levels. This work has provided additional insights into the compounds participating both in the initial formation and subsequent growth of atmospheric new aerosol particles. It will hopefully prove an important step in understanding atmospheric gas-to-particle conversion, which, by influencing cloud properties, can have important climate impacts. All available knowledge needs to be constantly updated, summarized, and brought to the attention of our decision-makers. Only by increasing our understanding of all the relevant processes can we build reliable models to predict the long-term effects of decisions made today.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aerosol particles play a role in the earth ecosystem and affect human health. A significant pathway of producing aerosol particles in the atmosphere is new particle formation, where condensable vapours nucleate and these newly formed clusters grow by condensation and coagulation. However, this phenomenon is still not fully understood. This thesis brings an insight to new particle formation from an experimental point of view. Laboratory experiments were conducted both on the nucleation process and physicochemical properties related to new particle formation. Nucleation rate measurements are used to test nucleation theories. These theories, in turn, are used to predict nucleation rates in atmospheric conditions. However, the nucleation rate measurements have proven quite difficult to conduct, as different devices can yield nucleation rates with differences of several orders of magnitude for the same substances. In this thesis, work has been done to have a greater understanding in nucleation measurements, especially those conducted in a laminar flow diffusion chamber. Systematic studies of nucleation were also made for future verification of nucleation theories. Surface tensions and densities of substances related to atmospheric new particle formation were measured. Ternary sulphuric acid + ammonia + water is a proposed candidate to participate in atmospheric nucleation. Surface tensions of an alternative candidate to nucleate in boreal forest areas, sulphuric acid + dimethylamine + water, were also measured. Binary compounds, consisting of organic acids + water are possible candidates to participate in the early growth of freshly nucleated particles. All the measured surface tensions and densities were fitted with equations, thermodynamically consistent if possible, to be easily applied to atmospheric model calculations of nucleation and subsequent evolution of particle size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aerosol particles in the atmosphere are known to significantly influence ecosystems, to change air quality and to exert negative health effects. Atmospheric aerosols influence climate through cooling of the atmosphere and the underlying surface by scattering of sunlight, through warming of the atmosphere by absorbing sun light and thermal radiation emitted by the Earth surface and through their acting as cloud condensation nuclei. Aerosols are emitted from both natural and anthropogenic sources. Depending on their size, they can be transported over significant distances, while undergoing considerable changes in their composition and physical properties. Their lifetime in the atmosphere varies from a few hours to a week. New particle formation is a result of gas-to-particle conversion. Once formed, atmospheric aerosol particles may grow due to condensation or coagulation, or be removed by deposition processes. In this thesis we describe analyses of air masses, meteorological parameters and synoptic situations to reveal conditions favourable for new particle formation in the atmosphere. We studied the concentration of ultrafine particles in different types of air masses, and the role of atmospheric fronts and cloudiness in the formation of atmospheric aerosol particles. The dominant role of Arctic and Polar air masses causing new particle formation was clearly observed at Hyytiälä, Southern Finland, during all seasons, as well as at other measurement stations in Scandinavia. In all seasons and on multi-year average, Arctic and North Atlantic areas were the sources of nucleation mode particles. In contrast, concentrations of accumulation mode particles and condensation sink values in Hyytiälä were highest in continental air masses, arriving at Hyytiälä from Eastern Europe and Central Russia. The most favourable situation for new particle formation during all seasons was cold air advection after cold-front passages. Such a period could last a few days until the next front reached Hyytiälä. The frequency of aerosol particle formation relates to the frequency of low-cloud-amount days in Hyytiälä. Cloudiness of less than 5 octas is one of the factors favouring new particle formation. Cloudiness above 4 octas appears to be an important factor that prevents particle growth, due to the decrease of solar radiation, which is one of the important meteorological parameters in atmospheric particle formation and growth. Keywords: Atmospheric aerosols, particle formation, air mass, atmospheric front, cloudiness

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aerosols impact the planet and our daily lives through various effects, perhaps most notably those related to their climatic and health-related consequences. While there are several primary particle sources, secondary new particle formation from precursor vapors is also known to be a frequent, global phenomenon. Nevertheless, the formation mechanism of new particles, as well as the vapors participating in the process, remain a mystery. This thesis consists of studies on new particle formation specifically from the point of view of numerical modeling. A dependence of formation rate of 3 nm particles on the sulphuric acid concentration to the power of 1-2 has been observed. This suggests nucleation mechanism to be of first or second order with respect to the sulphuric acid concentration, in other words the mechanisms based on activation or kinetic collision of clusters. However, model studies have had difficulties in replicating the small exponents observed in nature. The work done in this thesis indicates that the exponents may be lowered by the participation of a co-condensing (and potentially nucleating) low-volatility organic vapor, or by increasing the assumed size of the critical clusters. On the other hand, the presented new and more accurate method for determining the exponent indicates high diurnal variability. Additionally, these studies included several semi-empirical nucleation rate parameterizations as well as a detailed investigation of the analysis used to determine the apparent particle formation rate. Due to their high proportion of the earth's surface area, oceans could potentially prove to be climatically significant sources of secondary particles. In the lack of marine observation data, new particle formation events in a coastal region were parameterized and studied. Since the formation mechanism is believed to be similar, the new parameterization was applied in a marine scenario. The work showed that marine CCN production is feasible in the presence of additional vapors contributing to particle growth. Finally, a new method to estimate concentrations of condensing organics was developed. The algorithm utilizes a Markov chain Monte Carlo method to determine the required combination of vapor concentrations by comparing a measured particle size distribution with one from an aerosol dynamics process model. The evaluation indicated excellent agreement against model data, and initial results with field data appear sound as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atmospheric aerosol particles have significant climatic effects. Secondary new particle formation is a globally important source of these particles. Currently, the mechanisms of particle formation and the vapours participating in this process are, however, not truly understood. The recently developed Neutral cluster and Air Ion Spectrometer (NAIS) was widely used in field studies of atmospheric particle formation. The NAIS was calibrated and found to be in adequate agreement with the reference instruments. It was concluded that NAIS can be reliably used to measure ions and particles near the sizes where the atmospheric particle formation begins. The main focus of this thesis was to study new particle formation and participation of ions in this process. To attain this objective, particle and ion formation and growth rates were studied in various environments - at several field sites in Europe, in previously rarely studied sites in Antarctica and Siberia and also in an indoor environment. New particle formation was observed at all sites were studied and the observations were used as indicatives of the particle formation mechanisms. Particle size-dependent growth rates and nucleation mode hygroscopic growth factors were examined to obtain information on the particle growth. It was found that the atmospheric ions participate in the initial steps of new particle formation, although their contribution was minor in the boundary layer. The highest atmospheric particle formation rates were observed at the most polluted sites where the role of ions was the least pronounced. Furthermore, the increase of particle growth rate with size suggested that enhancement of the growth by ions was negligible. Participation of organic vapours in the particle growth was supported by laboratory and field observations. It was addressed that secondary new particle formation can also be a significant source of indoor air particles. These results, extending over a wide variety of environments, give support to previous observations and increase understanding on new particle formation on a global scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The planet Mars is the Earth's neighbour in the Solar System. Planetary research stems from a fundamental need to explore our surroundings, typical for mankind. Manned missions to Mars are already being planned, and understanding the environment to which the astronauts would be exposed is of utmost importance for a successful mission. Information of the Martian environment given by models is already now used in designing the landers and orbiters sent to the red planet. In particular, studies of the Martian atmosphere are crucial for instrument design, entry, descent and landing system design, landing site selection, and aerobraking calculations. Research of planetary atmospheres can also contribute to atmospheric studies of the Earth via model testing and development of parameterizations: even after decades of modeling the Earth's atmosphere, we are still far from perfect weather predictions. On a global level, Mars has also been experiencing climate change. The aerosol effect is one of the largest unknowns in the present terrestrial climate change studies, and the role of aerosol particles in any climate is fundamental: studies of climate variations on another planet can help us better understand our own global change. In this thesis I have used an atmospheric column model for Mars to study the behaviour of the lowest layer of the atmosphere, the planetary boundary layer (PBL), and I have developed nucleation (particle formation) models for Martian conditions. The models were also coupled to study, for example, fog formation in the PBL. The PBL is perhaps the most significant part of the atmosphere for landers and humans, since we live in it and experience its state, for example, as gusty winds, nightfrost, and fogs. However, PBL modelling in weather prediction models is still a difficult task. Mars hosts a variety of cloud types, mainly composed of water ice particles, but also CO2 ice clouds form in the very cold polar night and at high altitudes elsewhere. Nucleation is the first step in particle formation, and always includes a phase transition. Cloud crystals on Mars form from vapour to ice on ubiquitous, suspended dust particles. Clouds on Mars have a small radiative effect in the present climate, but it may have been more important in the past. This thesis represents an attempt to model the Martian atmosphere at the smallest scales with high resolution. The models used and developed during the course of the research are useful tools for developing and testing parameterizations for larger-scale models all the way up to global climate models, since the small-scale models can describe processes that in the large-scale models are reduced to subgrid (not explicitly resolved) scale.