909 resultados para Amperometric measurements
Resumo:
PURPOSE: Pretreatment measurements of systemic inflammatory response, including the Glasgow prognostic score (GPS), the neutrophil-to-lymphocyte ratio (NLR), the monocyte-to-lymphocyte ratio (MLR), the platelet-to-lymphocyte ratio (PLR) and the prognostic nutritional index (PNI) have been recognized as prognostic factors in clear cell renal cell carcinoma (CCRCC), but there is at present no study that compared these markers. METHODS: We evaluated the pretreatment GPS, NLR, MLR, PLR and PNI in 430 patients, who underwent surgery for clinically localized CCRCC (pT1-3N0M0). Associations with disease-free survival were assessed with Cox models. Discrimination was measured with the C-index, and a decision curve analysis was used to evaluate the clinical net benefit. RESULTS: On multivariable analyses, all measures of systemic inflammatory response were significant prognostic factors. The increase in discrimination compared with the stage, size, grade and necrosis (SSIGN) score alone was 5.8 % for the GPS, 1.1-1.4 % for the NLR, 2.9-3.4 % for the MLR, 2.0-3.3 % for the PLR and 1.4-3.0 % for the PNI. On the simultaneous multivariable analysis of all candidate measures, the final multivariable model contained the SSIGN score (HR 1.40, P < 0.001), the GPS (HR 2.32, P < 0.001) and the MLR (HR 5.78, P = 0.003) as significant variables. Adding both the GPS and the MLR increased the discrimination of the SSIGN score by 6.2 % and improved the clinical net benefit. CONCLUSIONS: In patients with clinically localized CCRCC, the GPS and the MLR appear to be the most relevant prognostic measures of systemic inflammatory response. They may be used as an adjunct for patient counseling, tailoring management and clinical trial design.
Resumo:
Pressurized re-entrant (or 4 pi) ionization chambers (ICs) connected to current-measuring electronics are used for activity measurements of photon emitting radionuclides and some beta emitters in the fields of metrology and nuclear medicine. As a secondary method, these instruments need to be calibrated with appropriate activity standards from primary or direct standardization. The use of these instruments over 50 years has been well described in numerous publications, such as the Monographie BIPM-4 and the special issue of Metrologia on radionuclide metrology (Ratel 2007 Metrologia 44 S7-16, Schrader1997 Activity Measurements With Ionization Chambers (Monographie BIPM-4) Schrader 2007 Metrologia 44 S53-66, Cox et al 2007 Measurement Modelling of the International Reference System (SIR) for Gamma-Emitting Radionuclides (Monographie BIPM-7)). The present work describes the principles of activity measurements, calibrations, and impurity corrections using pressurized ionization chambers in the first part and the uncertainty analysis illustrated with example uncertainty budgets from routine source-calibration as well as from an international reference system (SIR) measurement in the second part.
Resumo:
The present study was performed in an attempt to develop an in vitro integrated testing strategy (ITS) to evaluate drug-induced neurotoxicity. A number of endpoints were analyzed using two complementary brain cell culture models and an in vitro blood-brain barrier (BBB) model after single and repeated exposure treatments with selected drugs that covered the major biological, pharmacological and neuro-toxicological responses. Furthermore, four drugs (diazepam, cyclosporine A, chlorpromazine and amiodarone) were tested more in depth as representatives of different classes of neurotoxicants, inducing toxicity through different pathways of toxicity. The developed in vitro BBB model allowed detection of toxic effects at the level of BBB and evaluation of drug transport through the barrier for predicting free brain concentrations of the studied drugs. The measurement of neuronal electrical activity was found to be a sensitive tool to predict the neuroactivity and neurotoxicity of drugs after acute exposure. The histotypic 3D re-aggregating brain cell cultures, containing all brain cell types, were found to be well suited for OMICs analyses after both acute and long term treatment. The obtained data suggest that an in vitro ITS based on the information obtained from BBB studies and combined with metabolomics, proteomics and neuronal electrical activity measurements performed in stable in vitro neuronal cell culture systems, has high potential to improve current in vitro drug-induced neurotoxicity evaluation.
Resumo:
Living bacteria or yeast cells are frequently used as bioreporters for the detection of specific chemical analytes or conditions of sample toxicity. In particular, bacteria or yeast equipped with synthetic gene circuitry that allows the production of a reliable non-cognate signal (e.g., fluorescent protein or bioluminescence) in response to a defined target make robust and flexible analytical platforms. We report here how bacterial cells expressing a fluorescence reporter ("bactosensors"), which are mostly used for batch sample analysis, can be deployed for automated semi-continuous target analysis in a single concise biochip. Escherichia coli-based bactosensor cells were continuously grown in a 13 or 50 nanoliter-volume reactor on a two-layered polydimethylsiloxane-on-glass microfluidic chip. Physiologically active cells were directed from the nl-reactor to a dedicated sample exposure area, where they were concentrated and reacted in 40 minutes with the target chemical by localized emission of the fluorescent reporter signal. We demonstrate the functioning of the bactosensor-chip by the automated detection of 50 μgarsenite-As l(-1) in water on consecutive days and after a one-week constant operation. Best induction of the bactosensors of 6-9-fold to 50 μg l(-1) was found at an apparent dilution rate of 0.12 h(-1) in the 50 nl microreactor. The bactosensor chip principle could be widely applicable to construct automated monitoring devices for a variety of targets in different environments.
Resumo:
In this thesis the structure and properties of imprecise quantum measurements are investigated. The starting point for this investigation is the representation of a quantum observable as a normalized positive operator measure. A general framework to describe measurement inaccuracy is presented. Requirements for accurate measurements are discussed, and the relation of inaccuracy to some optimality criteria is studied. A characterization of covariant observables is given in the case when they are imprecise versions of a sharp observable. Also the properties of such observables are studied. The case of position and momentum observables is studied. All position and momentum observables are characterized, and the joint positionmomentum measurements are discussed.
Resumo:
COD discharges out of processes have increased in line with elevating brightness demands for mechanical pulp and papers. The share of lignin-like substances in COD discharges is on average 75%. In this thesis, a plant dynamic model was created and validated as a means to predict COD loading and discharges out of a mill. The assays were carried out in one paper mill integrate producing mechanical printing papers. The objective in the modeling of plant dynamics was to predict day averages of COD load and discharges out of mills. This means that online data, like 1) the level of large storage towers of pulp and white water 2) pulp dosages, 3) production rates and 4) internal white water flows and discharges were used to create transients into the balances of solids and white water, referred to as “plant dynamics”. A conversion coefficient was verified between TOC and COD. The conversion coefficient was used for predicting the flows from TOC to COD to the waste water treatment plant. The COD load was modeled with similar uncertainty as in reference TOC sampling. The water balance of waste water treatment was validated by the reference concentration of COD. The difference of COD predictions against references was within the same deviation of TOC-predictions. The modeled yield losses and retention values of TOC in pulping and bleaching processes and the modeled fixing of colloidal TOC to solids between the pulping plant and the aeration basin in the waste water treatment plant were similar to references presented in literature. The valid water balances of the waste water treatment plant and the reduction model of lignin-like substances produced a valid prediction of COD discharges out of the mill. A 30% increase in the release of lignin-like substances in the form of production problems was observed in pulping and bleaching processes. The same increase was observed in COD discharges out of waste water treatment. In the prediction of annual COD discharge, it was noticed that the reduction of lignin has a wide deviation from year to year and from one mill to another. This made it difficult to compare the parameters of COD discharges validated in plant dynamic simulation with another mill producing mechanical printing papers. However, a trend of moving from unbleached towards high-brightness TMP in COD discharges was valid.
Resumo:
Recent technology has provided us with new information about the internal structures and properties of biomolecules. This has lead to the design of applications based on underlying biological processes. Applications proposed for biomolecules are, for example, the future computers and different types of sensors. One potential biomolecule to be incorporated in the applications is bacteriorhodopsin. Bacteriorhodopsin is a light-sensitive biomolecule, which works in a similar way as the light sensitive cells of the human eye. Bacteriorhodopsin reacts to light by undergoing a complicated series of chemical and thermal transitions. During these transitions, a proton translocation occurs inside the molecule. It is possible to measure the photovoltage caused by the proton translocations when a vast number of molecules is immobilized in a thin film. Also the changes in the light absorption of the film can be measured. This work aimed to develop the electronics needed for the voltage measurements of the bacteriorhodopsin-based optoelectronic sensors. The development of the electronics aimed to get more accurate information about the structure and functionality of these sensors. The sensors used in this work contain a thick film of bacteriorhodopsin immobilized in polyvinylalcohol. This film is placed between two transparent electrodes. The result of this work is an instrumentation amplifier which can be placed in a small space very close to the sensor. By using this amplifier, the original photovoltage can be measured in more detail. The response measured using this amplifier revealed two different components, which could not be distinguished earlier. Another result of this work is the model for the photoelectric response in dry polymer films.
Resumo:
In the present diploma work optical inspection methods were used to investigate surface roughness of paper samples. A special measurement setup, which includes three laser light sources of three different wavelengths, photodetector and goniometer, was used to measure the reflected laser light properties. The intensity of the light reflected in specular direction was measured versus the laser incidence angle for reference metal sample. The value of roughness was estimated and compared to initially known value of metal sample roughness. Thus, the measurement equipment and method were validated. Then the reflected intensity was measured versus reflection angle at constant incidence angle for the same metal sample and paper samples under investigation. The final values of the surface roughness were obtained from the analysis of the reflected intensity dependence. The results are in good correlation with other research groups.
Resumo:
The directional consistency and skew-symmetry statistics have been proposed as global measurements of social reciprocity. Although both measures can be useful for quantifying social reciprocity, researchers need to know whether these estimators are biased in order to assess descriptive results properly. That is, if estimators are biased, researchers should compare actual values with expected values under the specified null hypothesis. Furthermore, standard errors are needed to enable suitable assessment of discrepancies between actual and expected values. This paper aims to derive some exact and approximate expressions in order to obtain bias and standard error values for both estimators for round-robin designs, although the results can also be extended to other reciprocal designs.
Resumo:
This paper proposes the use of an autonomous assistant mobile robot in order to monitor the environmental conditions of a large indoor area and develop an ambient intelligence application. The mobile robot uses single high performance embedded sensors in order to collect and geo-reference environmental information such as ambient temperature, air velocity and orientation and gas concentration. The data collected with the assistant mobile robot is analyzed in order to detect unusual measurements or discrepancies and develop focused corrective ambient actions. This paper shows an example of the measurements performed in a research facility which have enabled the detection and location of an uncomfortable temperature profile inside an office of the research facility. The ambient intelligent application has been developed by performing some localized ambient measurements that have been analyzed in order to propose some ambient actuations to correct the uncomfortable temperature profile.
Resumo:
Water stress is a defining characteristic of Mediterranean ecosystems, and is likely to become more severe in the coming decades. Simulation models are key tools for making predictions, but our current understanding of how soil moisture controls ecosystem functioning is not sufficient to adequately constrain parameterisations. Canopy-scale flux data from four forest ecosystems with Mediterranean-type climates were used in order to analyse the physiological controls on carbon and water flues through the year. Significant non-stomatal limitations on photosynthesis were detected, along with lesser changes in the conductance-assimilation relationship. New model parameterisations were derived and implemented in two contrasting modelling approaches. The effectiveness of two models, one a dynamic global vegetation model ('ORCHIDEE'), and the other a forest growth model particularly developed for Mediterranean simulations ('GOTILWA+'), was assessed and modelled canopy responses to seasonal changes in soil moisture were analysed in comparison with in situ flux measurements. In contrast to commonly held assumptions, we find that changing the ratio of conductance to assimilation under natural, seasonally-developing, soil moisture stress is not sufficient to reproduce forest canopy CO2 and water fluxes. However, accurate predictions of both CO2 and water fluxes under all soil moisture levels encountered in the field are obtained if photosynthetic capacity is assumed to vary with soil moisture. This new parameterisation has important consequences for simulated responses of carbon and water fluxes to seasonal soil moisture stress, and should greatly improve our ability to anticipate future impacts of climate changes on the functioning of ecosystems in Mediterranean-type climates.
Resumo:
Electrochemical sensors have attracted considerable attention in recent years because they provide data about the chemical state of our surroundings and the dynamics of the chemical transformations in the form a spatially resolved image. Particular interest has been directed to measurements in restricted-volume samples as new technologies enable the fabrication of miniaturized versions of sensors with reproducible characteristics. Taking these aspects into consideration, this review focuses on the use of electrodes of micrometer dimensions to acquire chemical information in microdomains in which concentrations may not be spatially homogeneous. This is possible because microelectrodes allow fast-response measurements with micrometer resolution to be performed. On the other hand, the use of microelectrodes as amperometric sensors presents an inherent drawback owing to the insufficient specificity toward the substrate of interest. Hence, some comments on strategies to enhance the selectivity of amperometric sensors are also made. Finally, recent applications of structurally microscopic electrodes as in vivo sensors are shown, as well as a prospect of the future trend in this field.
Resumo:
Identification of clouds from satellite images is now a routine task. Observation of clouds from the ground, however, is still needed to acquire a complete description of cloud conditions. Among the standard meteorologicalvariables, solar radiation is the most affected by cloud cover. In this note, a method for using global and diffuse solar radiation data to classify sky conditions into several classes is suggested. A classical maximum-likelihood method is applied for clustering data. The method is applied to a series of four years of solar radiation data and human cloud observations at a site in Catalonia, Spain. With these data, the accuracy of the solar radiation method as compared with human observations is 45% when nine classes of sky conditions are to be distinguished, and it grows significantly to almost 60% when samples are classified in only five different classes. Most errors are explained by limitations in the database; therefore, further work is under way with a more suitable database
Resumo:
Background: Intraocular pressure (IOP) is the pressure inside the eye that helps to maintain the integrity and the suitable form of the ocular globe. Precise and accurate measures of IOP are needed for the diagnosis as well as follow-up of glaucoma. In daily clinical practice, Goldmann applanation tonometer (GAT) and Non-contact tonometer (NCT) are the most common devices for measuring IOP. A close agreement between these methods has been showed, particularly in normotensive patients and a poor agreement, especially when IOP levels are above the normal range. Ophthalmologists have noticed a poor agreement between NCT and GAT, observing that by using NCT and after comparing with GAT, there is an overestimation of IOP readings, and particularly it occurs when the eyes are tearful. Previous studies investigate the effect of tears in Non-contact tonometer readings by the instillation of artificial tears, concluding in one of the studies that the variation was less than 1mmHg and not clinically significant, in contrast with another study which the increases were sadistically significant. Tear menisci are a thin strip of tear fluid located between the bulbar conjunctiva and the eyelid margins. We think that the overestimation of IOP readings using NCT could be due to the presence of a higher volume of tear in the lower tear meniscus which might cause an optical interference in the optoelectronic applanation monitoring system of this deviceObjectives: To research the influence of a certain volume of fluid in the lower tear meniscus on IOP measurements using the NCT in healthy eyes. Moreover, to investigate the agreement between IOP readings obtained by NCT and GAT in the presence and absence of this volume of fluidMethods: The study design will be transversal for diagnostic tests of repeated measures. We will study patients with no ocular pathology and IOP<21mmHg. It will consist in the measurement of IOP using NCT before and after the instillation of COLIRCUSÍ FLUOTEST, used as a volume of fluid in the lower tear meniscus, to observe if there will be differences using the paired t-test. Moreover, we will take IOP measures by GAT in order to know the agreement between these methods after and before the application of these eyedrops, using the ICC (intraclass correlation coefficient) and the Bland-Altmann method