968 resultados para Algebraic Bethe-ansatz
Resumo:
We suggest a new notion of behaviour preserving transition refinement based on partial order semantics. This notion is called transition refinement. We introduced transition refinement for elementary (low-level) Petri Nets earlier. For modelling and verifying complex distributed algorithms, high-level (Algebraic) Petri nets are usually used. In this paper, we define transition refinement for Algebraic Petri Nets. This notion is more powerful than transition refinement for elementary Petri nets because it corresponds to the simultaneous refinement of several transitions in an elementary Petri net. Transition refinement is particularly suitable for refinement steps that increase the degree of distribution of an algorithm, e.g. when synchronous communication is replaced by asynchronous message passing. We study how to prove that a replacement of a transition is a transition refinement.
Resumo:
In this work, we present a systematic approach to the representation of modelling assumptions. Modelling assumptions form the fundamental basis for the mathematical description of a process system. These assumptions can be translated into either additional mathematical relationships or constraints between model variables, equations, balance volumes or parameters. In order to analyse the effect of modelling assumptions in a formal, rigorous way, a syntax of modelling assumptions has been defined. The smallest indivisible syntactical element, the so called assumption atom has been identified as a triplet. With this syntax a modelling assumption can be described as an elementary assumption, i.e. an assumption consisting of only an assumption atom or a composite assumption consisting of a conjunction of elementary assumptions. The above syntax of modelling assumptions enables us to represent modelling assumptions as transformations acting on the set of model equations. The notion of syntactical correctness and semantical consistency of sets of modelling assumptions is defined and necessary conditions for checking them are given. These transformations can be used in several ways and their implications can be analysed by formal methods. The modelling assumptions define model hierarchies. That is, a series of model families each belonging to a particular equivalence class. These model equivalence classes can be related to primal assumptions regarding the definition of mass, energy and momentum balance volumes and to secondary and tiertinary assumptions regarding the presence or absence and the form of mechanisms within the system. Within equivalence classes, there are many model members, these being related to algebraic model transformations for the particular model. We show how these model hierarchies are driven by the underlying assumption structure and indicate some implications on system dynamics and complexity issues. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The IWA Anaerobic Digestion Modelling Task Group was established in 1997 at the 8th World Congress on,Anaerobic Digestion (Sendai, Japan) with the goal of developing a generalised anaerobic digestion model. The structured model includes multiple steps describing biochemical as well as physicochemical processes. The biochemical steps include disintegration from homogeneous particulates to carbohydrates, proteins and lipids; extracellular hydrolysis of these particulate substrates to sugars, amino acids, and long chain fatty acids (LCFA), respectively; acidogenesis from sugars and amino acids to volatile fatty acids (VFAs) and hydrogen; acetogenesis of LCFA and VFAs to acetate; and separate methanogenesis steps from acetate and hydrogen/CO2. The physico-chemical equations describe ion association and dissociation, and gas-liquid transfer. Implemented as a differential and algebraic equation (DAE) set, there are 26 dynamic state concentration variables, and 8 implicit algebraic variables per reactor vessel or element. Implemented as differential equations (DE) only, there are 32 dynamic concentration state variables.
Resumo:
A new parafermionic algebra associated with the homogeneous space A(2)((2))/U(1) and its corresponding Z-algebra have been recently proposed. In this paper, we give a free boson representation of the A(2)((2)) parafermion algebra in terms of seven free fields. Free field realizations of the parafermionic energy-momentum tensor and screening currents are also obtained. A new algebraic structure is discovered, which contains a W-algebra type primary field with spin two. (C) 2002 Published by Elsevier Science B.V.
Resumo:
We detail the automatic construction of R matrices corresponding to (the tensor products of) the (O-m\alpha(n)) families of highest-weight representations of the quantum superalgebras Uq[gl(m\n)]. These representations are irreducible, contain a free complex parameter a, and are 2(mn)-dimensional. Our R matrices are actually (sparse) rank 4 tensors, containing a total of 2(4mn) components, each of which is in general an algebraic expression in the two complex variables q and a. Although the constructions are straightforward, we describe them in full here, to fill a perceived gap in the literature. As the algorithms are generally impracticable for manual calculation, we have implemented the entire process in MATHEMATICA; illustrating our results with U-q [gl(3\1)]. (C) 2002 Published by Elsevier Science B.V.
Resumo:
High index Differential Algebraic Equations (DAEs) force standard numerical methods to lower order. Implicit Runge-Kutta methods such as RADAU5 handle high index problems but their fully implicit structure creates significant overhead costs for large problems. Singly Diagonally Implicit Runge-Kutta (SDIRK) methods offer lower costs for integration. This paper derives a four-stage, index 2 Explicit Singly Diagonally Implicit Runge-Kutta (ESDIRK) method. By introducing an explicit first stage, the method achieves second order stage calculations. After deriving and solving appropriate order conditions., numerical examples are used to test the proposed method using fixed and variable step size implementations. (C) 2001 IMACS. Published by Elsevier Science B.V. All rights reserved.
Resumo:
O presente trabalho investigou o problema da modelagem da dispersão de compostos odorantes em presença de obstáculos (cúbicos e com forma complexa) sob condição de estabilidade atmosférica neutra. Foi empregada modelagem numérica baseada nas equações de transporte (CFD1) bem como em modelos algébricos baseados na pluma Gausseana (AERMOD2, CALPUFF3 e FPM4). Para a validação dos resultados dos modelos e a avaliação do seu desempenho foram empregados dados de experimentos em túnel de vento e em campo. A fim de incluir os efeitos da turbulência atmosférica na dispersão, dois diferentes modelos de sub-malha associados à Simulação das Grandes Escalas (LES5) foram investigados (Smagorinsky dinâmico e WALE6) e, para a inclusão dos efeitos de obstáculos na dispersão nos modelos Gausseanos, foi empregado o modelo PRIME7. O uso do PRIME também foi proposto para o FPM como uma inovação. De forma geral, os resultados indicam que o uso de CFD/LES é uma ferramenta útil para a investigação da dispersão e o impacto de compostos odorantes em presença de obstáculos e também para desenvolvimento dos modelos Gausseanos. Os resultados também indicam que o modelo FPM proposto, com a inclusão dos efeitos do obstáculo baseado no PRIME também é uma ferramenta muito útil em modelagem da dispersão de odores devido à sua simplicidade e fácil configuração quando comparado a modelos mais complexos como CFD e mesmo os modelos regulatórios AERMOD e CALPUFF. A grande vantagem do FPM é a possibilidade de estimar-se o fator de intermitência e a relação pico-média (P/M), parâmetros úteis para a avaliação do impacto de odores. Os resultados obtidos no presente trabalho indicam que a determinação dos parâmetros de dispersão para os segmentos de pluma, bem como os parâmetros de tempo longo nas proximidades da fonte e do obstáculo no modelo FPM pode ser melhorada e simulações CFD podem ser usadas como uma ferramenta de desenvolvimento para este propósito. Palavras chave: controle de odor, dispersão, fluidodinâmica computacional, modelagem matemática, modelagem gaussiana de pluma flutuante, simulação de grandes vórtices (LES).
Resumo:
Nos anos mais recentes, observa-se aumento na adoção das técnicas de silvicultura de precisão em florestas plantadas no Brasil. Os plantios de eucalipto ocorrem preferencialmente em áreas com baixa fertilidade de solo e consequentemente baixa produtividade. Logo, para otimizar ao máximo a produção, é necessário saber o quanto essa cultura pode produzir em cada local (sítio). Objetivou-se aplicar uma metodologia que utiliza técnicas de estatística, geoestatística e geoprocessamento, no mapeamento da variabilidade espacial e temporal de atributos químicos do solo cultivado com eucalipto, em área de 10,09 ha, situada no sul do estado do Espírito Santo. Os atributos químicos da fertilidade do solo estudados foram: fósforo (P), potássio (K), cálcio (Ca) e magnésio (Mg), no ano da implantação do povoamento do eucalipto, em 2008, e três anos após, em 2011. O solo foi amostrado em duas profundidades, 0-0,2 m e 0,2-0,4 m, nos 94 pontos de uma malha regular, com extensão de 33 x 33 m. Os dados foram analisados pela estatística descritiva e, em seguida, pela geoestatística, por meio do ajuste de semivariogramas. Diferentes métodos de interpolação foram testados para produzir mapas temáticos mais precisos e facilitar as operações algébricas utilizadas. Com o auxílio de índices quantitativos, realizou-se uma análise geral da fertilidade do solo, por meio da álgebra de mapas. A metodologia utilizada neste estudo possibilitou mapear a variabilidade espacial e temporal de atributos químicos do solo. A análise variográfica mostrou que todos os atributos estudados apresentaram-se estruturados espacialmente, exceto para o atributo P, no Ano Zero (camada 0-0,2 m) e no Ano Três (ambas as camadas). Os melhores métodos de interpolação para o mapeamento de cada atributo químico do solo foram identificados com a ajuda gráfica do Diagrama de Taylor. Mereceram destaque, os modelos esférico e exponencial nas interpolações para a maioria dos atributos químicos do solo avaliados. Apesar de a variação espacial e temporal dos atributos estudados apresentar-se, em média, com pequena variação negativa, a metodologia usada mostrou variações positivas na fertilidade do solo em várias partes da área de estudo. Além disso, os resultados demonstram que os efeitos observados são majoritariamente em função da cultura, uma vez que não foram coletadas amostras de solo em locais adubados. A produtividade do sítio florestal apresentou-se com tendências semelhantes às variações ocorridas na fertilidade do solo, exceto para o magnésio, que se mostrou com tendências espaciais para suporte de elevadas produtividades, de até 50 m3 ha-1 ano-1. Além de mostrar claramente as tendências observadas para as variações na fertilidade do solo, a metodologia utilizada confirma um caminho operacional acessível para empresas e produtores florestais para o manejo nutricional em florestas plantadas. O uso dos mapas facilita a mobilização de recursos para melhorar a aplicação de fertilizantes e corretivos necessários.
Resumo:
A numerical comparison is performed between three methods of third order with the same structure, namely BSC, Halley’s and Euler–Chebyshev’s methods. As the behavior of an iterative method applied to a nonlinear equation can be highly sensitive to the starting points, the numerical comparison is carried out, allowing for complex starting points and for complex roots, on the basins of attraction in the complex plane. Several examples of algebraic and transcendental equations are presented.
Resumo:
We derive a set of differential inequalities for positive definite functions based on previous results derived for positive definite kernels by purely algebraic methods. Our main results show that the global behavior of a smooth positive definite function is, to a large extent, determined solely by the sequence of even-order derivatives at the origin: if a single one of these vanishes then the function is constant; if they are all non-zero and satisfy a natural growth condition, the function is real-analytic and consequently extends holomorphically to a maximal horizontal strip of the complex plane.
Resumo:
In the energy management of the isolated operation of small power system, the economic scheduling of the generation units is a crucial problem. Applying right timing can maximize the performance of the supply. The optimal operation of a wind turbine, a solar unit, a fuel cell and a storage battery is searched by a mixed-integer linear programming implemented in General Algebraic Modeling Systems (GAMS). A Virtual Power Producer (VPP) can optimal operate the generation units, assured the good functioning of equipment, including the maintenance, operation cost and the generation measurement and control. A central control at system allows a VPP to manage the optimal generation and their load control. The application of methodology to a real case study in Budapest Tech, demonstrates the effectiveness of this method to solve the optimal isolated dispatch of the DC micro-grid renewable energy park. The problem has been converged in 0.09 s and 30 iterations.
Resumo:
The management of energy resources for islanded operation is of crucial importance for the successful use of renewable energy sources. A Virtual Power Producer (VPP) can optimally operate the resources taking into account the maintenance, operation and load control considering all the involved cost. This paper presents the methodology approach to formulate and solve the problem of determining the optimal resource allocation applied to a real case study in Budapest Tech’s. The problem is formulated as a mixed-integer linear programming model (MILP) and solved by a deterministic optimization technique CPLEX-based implemented in General Algebraic Modeling Systems (GAMS). The problem has also been solved by Evolutionary Particle Swarm Optimization (EPSO). The obtained results are presented and compared.
Resumo:
In the energy management of a small power system, the scheduling of the generation units is a crucial problem for which adequate methodologies can maximize the performance of the energy supply. This paper proposes an innovative methodology for distributed energy resources management. The optimal operation of distributed generation, demand response and storage resources is formulated as a mixed-integer linear programming model (MILP) and solved by a deterministic optimization technique CPLEX-based implemented in General Algebraic Modeling Systems (GAMS). The paper deals with a vision for the grids of the future, focusing on conceptual and operational aspects of electrical grids characterized by an intensive penetration of DG, in the scope of competitive environments and using artificial intelligence methodologies to attain the envisaged goals. These concepts are implemented in a computational framework which includes both grid and market simulation.
Resumo:
Pós-graduação em Matemática Universitária - IGCE
Resumo:
Copyright © 2014 António F. Rodrigues, Nuno O. Martins. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In accordance of the Creative Commons Attribution License all Copyrights © 2014 are reserved for SCIRP and the owner of the intellectual property António F. Rodrigues, Nuno O. Martins. All Copyright © 2014 are guarded by law and by SCIRP as a guardian.