995 resultados para Al flux
Resumo:
Electron diffraction and high-resolution electron microscopy have been employed to differentiate among icosahedral, decagonal and crystalline particles that occur in as-cast and rapidly solidified Al-Mn-Cu alloys. The resemblance between decagonal quasicrystals and crystals in their electron diffraction patterns is striking. The crystalline structure is based on the orthorhombic 'Al3Mn' structure, but also a new monoclinic phase called 'X' has been discovered and described here. The present observations are also closely related to the orthorhombic structures in Al60Mn11Ni4. The occurrence of fine-scale twinning and fragmentation into domains explains the complex diffraction effects.
Resumo:
Head-on infall of two compact objects with arbitrary mass ratio is investigated using the multipolar post-Minkowskian approximation method. At the third post-Newtonian order the energy flux, in addition to the instantaneous contributions, also includes hereditary contributions consisting of the gravitational-wave tails, tails-of-tails, and the tail-squared terms. The results are given both for infall from infinity and also for infall from a finite distance. These analytical expressions should be useful for the comparison with the high accuracy numerical relativity results within the limit in which post-Newtonian approximations are valid.
Resumo:
Meridional circulation is an important ingredient in flux transport dynamo models. We have studied its importance on the period, the amplitude of the solar cycle, and also in producing Maunder-like grand minima in these models. First, we model the periods of the last 23 sunspot cycles by varying the meridional circulation speed. If the dynamo is in a diffusion-dominated regime, then we find that most of the cycle amplitudes also get modeled up to some extent when we model the periods. Next, we propose that at the beginning of the Maunder minimum the amplitude of meridional circulation dropped to a low value and then after a few years it increased again. Several independent studies also favor this assumption. With this assumption, a diffusion-dominated dynamo is able to reproduce many important features of the Maunder minimum remarkably well. If the dynamo is in a diffusion-dominated regime, then a slower meridional circulation means that the poloidal field gets more time to diffuse during its transport through the convection zone, making the dynamo weaker. This consequence helps to model both the cycle amplitudes and the Maunder-like minima. We, however, fail to reproduce these results if the dynamo is in an advection-dominated regime.
Resumo:
The subject and methodology of biblical scholarship has expanded immense-ly during the last few decades. The traditional text-, literary-, source- and form-critical approaches, labeled historical-critical scholarship , have faced the challenge of social sciences. Various new literary, synchronic readings, sometimes characterized with the vague term postmodernism, have in turn challenged historicalcritical, and social-scientific approaches. Widened limits and diverging methodologies have caused a sense of crisis in biblical criticism. This metatheoretical thesis attempts to bridge the gap between philosophical discussion about the basis of biblical criticism and practical academic biblical scholarship. The study attempts to trace those epistemological changes that have produced the wealth of methods and results within biblical criticism. The account of the cult reform of King Josiah of Judah as reported in 2 Kings 22:1 23:30 serves as the case study because of its importance for critical study of the Hebrew Bible. Various scholarly approaches embracing 2 Kings 22:1 23:30 are experimentally arranged around four methodological positions: text, author, reader, and context. The heuristic model is a tentative application of Oliver Jahraus s model of four paradigms in literary theory. The study argues for six theses: 1) Our knowledge of the world is con-structed, fallible and theory-laden. 2) Methodological plurality is the neces-sary result of changes in epistemology and culture in general. 3) Oliver Jahraus s four methodological positions in regard to literature are also an applicable model within biblical criticism to comprehend the methodological plurality embracing the study of the Hebrew Bible. 4) Underlying the methodological discourse embracing biblical criticism is the epistemological ten-sion between the natural sciences and the humanities. 5) Biblical scholars should reconsider and analyze in detail concepts such as author and editor to overcome the dichotomy between the Göttingen and Cross schools. 6) To say something about the historicity of 2 Kings 22:1 23:30 one must bring together disparate elements from various disciplines and, finally, admit that though it may be possible to draw some permanent results, our conclusions often remain provisional.
Resumo:
Eddy covariance (EC)-flux measurement technique is based on measurement of turbulent motions of air with accurate and fast measurement devices. For instance, in order to measure methane flux a fast methane gas analyser is needed which measures methane concentration at least ten times in a second in addition to a sonic anemometer, which measures the three wind components with the same sampling interval. Previously measurement of methane flux was almost impossible to carry out with EC-technique due to lack of fast enough gas analysers. However during the last decade new instruments have been developed and thus methane EC-flux measurements have become more common. Performance of four methane gas analysers suitable for eddy covariance measurements are assessed in this thesis. The assessment and comparison was performed by analysing EC-data obtained during summer 2010 (1.4.-26.10.) at Siikaneva fen. The four participating methane gas analysers are TGA-100A (Campbell Scientific Inc., USA), RMT-200 (Los Gatos Research, USA), G1301-f (Picarro Inc., USA) and Prototype-7700 (LI-COR Biosciences, USA). RMT-200 functioned most reliably throughout the measurement campaign and the corresponding methane flux data had the smallest random error. In addition, methane fluxes calculated from data obtained from G1301-f and RMT-200 agree remarkably well throughout the measurement campaign. The calculated cospectra and power spectra agree well with corresponding temperature spectra. Prototype-7700 functioned only slightly over one month in the beginning of the measurement campaign and thus its accuracy and long-term performance is difficult to assess.
Resumo:
Cast aluminium alloy mica particle composites of varying mica content were tested in tension, compression, and impact. With 2.2 percent mica (size range 40µm – 120µm) the tensile and compression strengths of aluminium alloy decreased by 56 and 22 percent, respectively. The corresponding decreases in percent elongation and percent reduction are 49 and 39 percent. Previous work [2] shows that despite this decrease in strength the composite with 2.5 percent mica and having an UTS of 15 kg/mm2 and compression strength of 28 kg/mm2 performs well as a bearing material under severe running conditions. The differences in strength characteristics of cast aluminium-mica particle composites between tension and compression suggests that, as in cast iron, expansion of voids at the matrix particle interface may be the guiding mechanism of the deformation. SEM studies show that on the tensile fractured specimen surface, there are large voids at the particle matrix interface.
Resumo:
The solid-state transformation behaviour of the icosahedral phase in rapidly solidified Al-20 at.% Mn has been investigated by in situ heating experiments in the transmission electron microscope. As-rapidly-solidified Al-20 at.% Mn consists mainly of a dendritic icosahedral phase, with a small amount of interdendritic f.c.c. agr-Al. During subsequent heat treatment at temperatures below about 500°C, the dendritic icosahedral phase grows and consumes the interdendritic agr-Al. At about 500°C the decagonal phase nucleates near icosahedral dendrite and grain boundaries and then grows into the icosahedral matrix by lateral motion of ledges 10-20 nm high across facet planes normal to the twofold symmetry axes. At about 600°C the decagonal phase transforms into a crystalline phase. The present study suggests that solid-state decomposition of the icosahedral phase is the mechanism of decagonal phase formation in as-rapidly-solidified Al-Mn alloys.
Resumo:
The Landau damping of sound waves in a plasma consisting of ensemble of magnetic flux tubes is discussed. It is shown that sound waves cannot be Landau damped in general but under certain restricted conditions on plasma parameters the possibility of absorption of these waves can exist. The possibility of radiative damping of the acoustic waves along the magnetic filaments is also discussed. It appears that the most plausible mechanism of damping of sound waves in a plasma consisting of magnetic filaments can be due to scattering of a sound wave by the filaments.
Resumo:
Alkali aluminosilicate glasses prepared by the gel and the melt routes have been investigated by Si-29 and Al-27 MAS NMR spectroscopy. It is found that Al has a tetrahedral coordination in the gel glasses modified with equivalent proportions of alkalis unlike in a pure aluminosilicate glass where Al has both four and six coordinations. Silicon is present as Q4 units in all the 5M2O 5Al2O3 9OSiO2 ( M = Li, Na and K) gel glasses studied whereas it is present in Q2 or Q3 species in the lithium aluminosilicate glasses of compositions 40Li2O x Al2O3 (1-x)SiO2 (1 less-than-or-equal-to x less-than-or-equal-to 15) and xLi2O 10Al2O3 (1-x)SiO2 (20 less-than-or-equal-to x less-than-or-equal-to 40). The combination of Q2 and Q3 is also found in certain sodium aluminosilicate glasses, but they change to Q2 and Q1 as the concentration of SiO2 decreases.
Resumo:
Working under the hypothesis that magnetic flux in the sun is generated at the bottom of the convection zone, Choudhuri and Gilman (1987; Astrophys. J. 316, 788) found that a magnetic flux tube symmetric around the rotation axis, when released at the bottom of the convection zone, gets deflected by the Coriolis force and tends to move parallel to the rotation axis as it rises in the convection zone. As a result, all the flux emerges at rather high latitudes and the flux observed at the typical sunspot latitudes remains unexplained. Choudhuri (1989; Solar Physics, in press) finds that non-axisymmetric perturbations too cannot subdue the Coriolis force. In this paper, we no longer treat the convection zone to be passive as in the previous papers, but we consider the role of turbulence in the convection zone in inhibiting the Coriolis force. The interaction of the flux tubes with the turbulence is treated in a phenomenological way as follows: (1) Large scale turbulence on the scale of giant cells can physically drag the tubes outwards, thus pulling the flux towards lower latitudes by dominating over the Coriolis force. (2) Small scale turbulence of the size of the tubes can exchange angular momentum with the tube, thus suppressing the growth of the Coriolis force and making the tubes emerge at lower latitudes. Numerical simulations show that the giant cells can drag the tubes and make them emerge at lower latitufes only if the velocities within the giant cells are unrealistically large of if the radii of the flux tubes are as small as 10 km. However, small scale turbulence can successfully suppress the growth of the Coriolis force if the tubes have radii smaller than about 300 km which may not be unreasonable. Such flux tubes can then emerge at low latitudes where sunspots are seen.