781 resultados para Agent-based methodologies
Resumo:
Revising its beliefs when receiving new information is an important ability of any intelligent system. However, in realistic settings the new input is not always certain. A compelling way of dealing with uncertain input in an agent-based setting is to treat it as unreliable input, which may strengthen or weaken the beliefs of the agent. Recent work focused on the postulates associated with this form of belief change and on finding semantical operators that satisfy these postulates. In this paper we propose a new syntactic approach for this form of belief change and show that it agrees with the semantical definition. This makes it feasible to develop complex agent systems capable of efficiently dealing with unreliable input in a semantically meaningful way. Additionally, we show that imposing restrictions on the input and the beliefs that are entailed allows us to devise a tractable approach suitable for resource-bounded agents or agents where reactiveness is of paramount importance.
Resumo:
AgentSpeak is a logic-based programming language, based on the Belief-Desire-Intention (BDI) paradigm, suitable for building complex agent-based systems. To limit the computational complexity, agents in AgentSpeak rely on a plan library to reduce the planning problem to the much simpler problem of plan selection. However, such a plan library is often inadequate when an agent is situated in an uncertain environment. In this paper, we propose the AgentSpeak+ framework, which extends AgentSpeak with a mechanism for probabilistic planning. The beliefs of an AgentSpeak+ agent are represented using epistemic states to allow an agent to reason about its uncertain observations and the uncertain effects of its actions. Each epistemic state consists of a POMDP, used to encode the agent’s knowledge of the environment, and its associated probability distribution (or belief state). In addition, the POMDP is used to select the optimal actions for achieving a given goal, even when facing uncertainty.
Resumo:
The formation rate of university spin-out firms has increased markedly over the past decade. While this is seen as an important channel for the commercialisation of academic research, concerns have centred around high failure rates and no-to-low growth among those which survive compared to other new technology based firms. Universities have responded to this by investing in incubators to assist spin-outs to overcome their liability of newness. Yet how effective are incubators in supporting these firms? Here we examine this in terms of the structural networks that spin-out firms form, the role of the incubator in this and the effect of this on the spin-out process.
Resumo:
Animal models of bone marrow transplantation (BMT) allow evaluation of new experimental treatment strategies. One potential strategy involves the treatment of donor marrow with ultra-violet B light to allow transplantation across histocompatibility boundaries without an increase in graft rejection or graft-versus-host disease. A major requirement for a new experimental protocol, particularly if it involves manipulation of the donor marrow, is that the manipulated marrow gives rise to long-term multilineage engraftment. DNA based methodologies are now routinely used by many centres to evaluate engraftment and degree of chimaerism post-BMT in humans. We report the adaptation of this methodology to the serial study of engraftment in rodents. Conditions have been defined which allow analysis of serial tail vein samples using PCR of short tandem repeat sequences (STR-PCR). These markers have been used to evaluate the contribution of ultraviolet B treated marrow to engraftment following BMT in rodents without compromising the health of the animals under study. Chimaerism data from sequential tail vein samples and bone marrow from selected sacrificed animals showed excellent correlation, thus confirming the validity of this approach in analysing haemopoietic tissue. Thus the use of this assay may facilitate experimental studies in animal BMT.
Resumo:
Residual recipient haematopoietic cells may coexist with donor haemopoietic tissue following BMT. This is known as mixed chimaerism. The incidence of mixed chimaerism varies with the sensitivity of the detection system used; DNA based methodologies are the most sensitive. The influence of mixed chimaerism on leukaemia relapse and graft rejection is unclear. The lineages in which mixed chimaerism occurs may affect outcome.
Resumo:
In this research, an agent-based model (ABM) was developed to generate human movement routes between homes and water resources in a rural setting, given commonly available geospatial datasets on population distribution, land cover and landscape resources. ABMs are an object-oriented computational approach to modelling a system, focusing on the interactions of autonomous agents, and aiming to assess the impact of these agents and their interactions on the system as a whole. An A* pathfinding algorithm was implemented to produce walking routes, given data on the terrain in the area. A* is an extension of Dijkstra's algorithm with an enhanced time performance through the use of heuristics. In this example, it was possible to impute daily activity movement patterns to the water resource for all villages in a 75 km long study transect across the Luangwa Valley, Zambia, and the simulated human movements were statistically similar to empirical observations on travel times to the water resource (Chi-squared, 95% confidence interval). This indicates that it is possible to produce realistic data regarding human movements without costly measurement as is commonly achieved, for example, through GPS, or retrospective or real-time diaries. The approach is transferable between different geographical locations, and the product can be useful in providing an insight into human movement patterns, and therefore has use in many human exposure-related applications, specifically epidemiological research in rural areas, where spatial heterogeneity in the disease landscape, and space-time proximity of individuals, can play a crucial role in disease spread.
Resumo:
A previous review of research on the practice of offender supervision identified the predominant use of interview-based methodologies and limited use of other research approaches (Robinson and Svensson, 2013). It also found that most research has tended to be locally focussed (i.e. limited to one jurisdiction) with very few comparative studies. This article reports on the application of a visual method in a small-scale comparative study. Practitioners in five European countries participated and took photographs of the places and spaces where offender supervision occurs. The aims of the study were two-fold: firstly to explore the utility of a visual approach in a comparative context; and secondly to provide an initial visual account of the environment in which offender supervision takes place. In this article we address the first of these aims. We describe the application of the method in some depth before addressing its strengths and weaknesses. We conclude that visual methods provide a useful tool for capturing data about the environments in which offender supervision takes place and potentially provide a basis for more normative explorations about the practices of offender supervision in comparative contexts.
Resumo:
There has been much interest in the belief–desire–intention (BDI) agent-based model for developing scalable intelligent systems, e.g. using the AgentSpeak framework. However, reasoning from sensor information in these large-scale systems remains a significant challenge. For example, agents may be faced with information from heterogeneous sources which is uncertain and incomplete, while the sources themselves may be unreliable or conflicting. In order to derive meaningful conclusions, it is important that such information be correctly modelled and combined. In this paper, we choose to model uncertain sensor information in Dempster–Shafer (DS) theory. Unfortunately, as in other uncertainty theories, simple combination strategies in DS theory are often too restrictive (losing valuable information) or too permissive (resulting in ignorance). For this reason, we investigate how a context-dependent strategy originally defined for possibility theory can be adapted to DS theory. In particular, we use the notion of largely partially maximal consistent subsets (LPMCSes) to characterise the context for when to use Dempster’s original rule of combination and for when to resort to an alternative. To guide this process, we identify existing measures of similarity and conflict for finding LPMCSes along with quality of information heuristics to ensure that LPMCSes are formed around high-quality information. We then propose an intelligent sensor model for integrating this information into the AgentSpeak framework which is responsible for applying evidence propagation to construct compatible information, for performing context-dependent combination and for deriving beliefs for revising an agent’s belief base. Finally, we present a power grid scenario inspired by a real-world case study to demonstrate our work.
Resumo:
The TELL ME agent based model simulates the connections between health agency communication, personal decisions to adopt protective behaviour during an influenza epidemic, and the effect of those decisions on epidemic progress. The behaviour decisions are modelled with a combination of personal attitude, behaviour adoption by neighbours, and the local recent incidence of influenza. This paper sets out and justifies the model design, including how these decision factors have been operationalised. By exploring the effects of different communication strategies, the model is intended to assist health authorities with their influenza epidemic communication plans. It can both assist users to understand the complex interactions between communication, personal behaviour and epidemic progress, and guide future data collection to improve communication planning.
Resumo:
This Integration Insight provides a brief overview of the most popular modelling techniques used to analyse complex real-world problems, as well as some less popular but highly relevant techniques. The modelling methods are divided into three categories, with each encompassing a number of methods, as follows: 1) Qualitative Aggregate Models (Soft Systems Methodology, Concept Maps and Mind Mapping, Scenario Planning, Causal (Loop) Diagrams), 2) Quantitative Aggregate Models (Function fitting and Regression, Bayesian Nets, System of differential equations / Dynamical systems, System Dynamics, Evolutionary Algorithms) and 3) Individual Oriented Models (Cellular Automata, Microsimulation, Agent Based Models, Discrete Event Simulation, Social Network
Analysis). Each technique is broadly described with example uses, key attributes and reference material.
Resumo:
Predictions which invoke evolutionary mechanisms ar e hard to test. Agent-based modeling in artificial life offers a way to simulate behaviors and interac tions in specific physical or social environments o ver many generations. The outcomes have implications fo r understanding adaptive value of behaviors in context. Pain-related behavior in animals is communicated to other animals that might protect or help, or might exploit or predate. An agent-based model simulated the effects of displaying or not displaying pain (expresser/non-expresser strategies) when injured, and of helping, ignoring or exploiting another in pain (altruistic/non-altruistic/selfish strategies) . Agents modeled in MATLAB interacted at random while foraging (gaining energy); random injury inte rrupted foraging for a fixed time unless help from an altruistic agent, who paid an energy cost, speeded recovery. Environmental and social conditions also varied, and each model ran for 10,000 iterations. Findings were meaningful in that, in general, conti ngencies evident from experimental work with a variety of mammals, over a few interactions, were r eplicated in the agent-based model after selection pressure over many generations. More energy-demandi ng expression of pain reduced its frequency in successive generations, and increasing injury frequ ency resulted in fewer expressers and altruists. Allowing exploitation of injured agents decreased e xpression of pain to near zero, but altruists remained. Decreasing costs or increasing benefits o f helping hardly changed its frequency, while increasing interaction rate between injured agents and helpers diminished the benefits to both. Agent- based modeling allows simulation of complex behavio urs and environmental pressures over evolutionary time.
Resumo:
Thesis (Master's)--University of Washington, 2016-03
Resumo:
The needs for effectively controlling carbon dioxide emissions and properly allocating carbon dioxide emission permits or allowances in China have never been so great. In this paper, a systematic multi-agent-based framework for the modelling and analysis of the allocation of carbon dioxide emission quotas in China is proposed. A carbon trading market model as the core of the activities of allocation management is constructed and discussed. In addition, examples of the modelling and simulation work are presented.
Resumo:
This paper presents MASCEM - a multi-agent based electricity market simulator. MASCEM uses game theory, machine learning techniques, scenario analysis and optimisation techniques to model market agents and to provide them with decision-support. This paper mainly focus on the MASCEM ability to provide the means to model and simulate Virtual Power Producers (VPP). VPPs are represented as a coalition of agents, with specific characteristics and goals. The paper detail some of the most important aspects considered in VPP formation and in the aggregation of new producers and includes a case study.
Resumo:
This paper presents MASCEM - a multi-agent based electricity market simulator. MASCEM uses game theory, machine learning techniques, scenario analysis and optimization techniques to model market agents and to provide them with decision-support. This paper mainly focus on the MASCEM ability to provide the means to model and simulate Virtual Power Players (VPP). VPPs are represented as a coalition of agents, with specific characteristics and goals. The paper details some of the most important aspects considered in VPP formation and in the aggregation of new producers and includes a case study based on real data.