900 resultados para Advanced virtual reality system
Resumo:
This study examined whether adding spin to a ball in the free kick situation in football affects a professional footballer's perception of the ball's future arrival position. Using a virtual reality set-up, participants observed the flight paths of aerodynamically realistic free kicks with (+/- 600 rpm) and without sidespin. With the viewpoint being fixed in the centre of the goal, participants had to judge whether the ball would have ended up in the goal or not. Results show that trajectories influenced by the Magnus force caused by sidespin gave rise to a significant shift in the percentage of goal responses. The resulting acceleration that causes the ball to continually change its heading direction as the trajectory unfolds does not seem to be taken into account by the participants when making goal judgments. We conclude that the visual system is not attuned to such accelerated motion, which may explain why goalkeepers appear to misjudge the future arrival point of such curved free kicks.
Resumo:
This paper presents research for developing a virtual inspection system that evaluates the dimensional tolerance of forged aerofoil blades formed using the finite element (FE) method. Conventional algorithms adopted by modern coordinate measurement processes have been incorporated with the latest free-form surface evaluation techniques to provide a robust framework for the dimensional inspection of FE aerofoil models. The accuracy of the approach had been verified with a strong correlation obtained between the virtual inspection data and coordinate measurement data from corresponding aerofoil components.
Resumo:
Although many studies have looked at the perceptual-cognitive strategies used to make anticipatory judgments in sport, few have examined the informational invariants that our visual system may be attuned to. Using immersive interactive virtual reality to simulate the aerodynamics of the trajectory of a ball with and without sidespin, the present study examined the ability of expert and novice soccer players to make judgments about the ball's future arrival position. An analysis of their judgment responses showed how participants were strongly influenced by the ball's trajectory. The changes in trajectory caused by sidespin led to erroneous predictions about the ball's future arrival position. An analysis of potential informational variables that could explain these results points to the use of a first-order compound variable combining optical expansion and optical displacement.
Resumo:
Virtual reality is currently considered a first-order resource for education and training. In this regard, artistic education, like other disciplines, is backing into this technology as a tool to overcome obstacles and contribute new ways of visualization and of providing information. And, in this case, the use of this technology presents enormous advantages for museums, especially, the more modest ones, which have few resources to disseminate and show their collections and works. Moreover, they have to resort to ingenious solutions to solve their difficulties. Therefore, the Pedagogic Museum of Children’s Art (MUPAI) backs into this technology to overcome some of the difficulties it encounters and to allow interested spectators to see its works, with great realism, and to visit its facilities anywhere in the world and at any time of the day. Hence, virtual reality unfolds new possibilities in the field of education that were inconceivable only a short time ago.
Resumo:
Virtual reality has a number of advantages for analyzing sports interactions such as the standardization of experimental conditions, stereoscopic vision, and complete control of animated humanoid movement. Nevertheless, in order to be useful for sports applications, accurate perception of simulated movement in the virtual sports environment is essential. This perception depends on parameters of the synthetic character such as the number of degrees of freedom of its skeleton or the levels of detail (LOD) of its graphical representation. This study focuses on the influence of this latter parameter on the perception of the movement. In order to evaluate it, this study analyzes the judgments of immersed handball goalkeepers that play against a graphically modified virtual thrower. Five graphical representations of the throwing action were defined: a textured reference level (L0), a nontextured level (L1), a wire-frame level (L2), a moving point light display (MLD) level with a normal-sized ball (L3), and a MLD level where the ball is represented by a point of light (L4). The results show that judgments made by goalkeepers in the L4 condition are significantly less accurate than in all the other conditions (p
Resumo:
Previous studies have shown that balls subjected to spin induce large errors in perceptual judgements (Craig et al, 2006; Craig et al 2009) due to the additional accelerative force that causes the ball’s flight path to deviate from a standard parabolic trajectory. A recent review however, has suggested that the findings from such experiments may be imprecise due to the decoupling of perception and action and the reliance on the ventral system (Van der Kamp et al, 2008). The aim of this study was to present the same curved free kick trajectory simulations from the perception only studies (Craig et al, 2006; Craig et al, 2009) but this time allow participants to move to intercept the ball. By using immersive, interactive virtual reality technology participants were asked to control the movement of a virtual effector presented in a virtual soccer stadium so that it would make contact with a virtual soccer ball as it crossed the goal-line. As in the perception only studies the direction of spin had a significant effect on the participants’ responses (F(2,12)=222.340; p
Resumo:
Affordances have recently been proposed as a guiding principle in perception–action research in sport (Fajen, Riley, & Turvey, 2009). In the present study, perception of the ’passability’ affordance of a gap between two approaching defenders in rugby is explored. A simplified rugby gap closure scenario was created using immersive, interactive virtual reality technology where 14 novice participants (attacker) judged the passability of the gap between two virtual defenders via a perceptual judgment (button press) task. The scenario was modeled according to tau theory (Lee, 1976) and a psychophysical function was fitted to the response data. Results revealed that a tau-based informational quantity could account for 82% of the variance in the data. Findings suggest that the passability affordance in this case, is defined by this variable and participants were able to use it in order to inform prospective judgments as to passability. These findings contribute to our understanding of affordances and how they may be defined in this particular sporting scenario; however, some limitations regarding methodology, such as decoupling perception and action are also acknowledged.
Resumo:
The finite element method plays an extremely important role in forging process design as it provides a valid means to quantify forging errors and thereby govern die shape modification to improve the dimensional accuracy of the component. However, this dependency on process simulation could raise significant problems and present a major drawback if the finite element simulation results were inaccurate. This paper presents a novel approach to assess the dimensional accuracy and shape quality of aeroengine blades formed from finite element hot-forging simulation. The proposed virtual inspection system uses conventional algorithms adopted by modern coordinate measurement processes as well as the latest free-form surface evaluation techniques to provide a robust framework for virtual forging error assessment. Established techniques for the physical registration of real components have been adapted to localise virtual models in relation to a nominal Design Coordinate System. Blades are then automatically analysed using a series of intelligent routines to generate measurement data and compute dimensional errors. The results of a comparison study indicate that the virtual inspection results and actual coordinate measurement data are highly comparable, validating the approach as an effective and accurate means to quantify forging error in a virtual environment. Consequently, this provides adequate justification for the implementation of the virtual inspection system in the virtual process design, modelling and validation of forged aeroengine blades in industry.
Resumo:
Background: As bending free-kicks becomes the norm in modern day soccer, implications for goalkeepers have largely been ignored. Although it has been reported that poor sensitivity to visual acceleration makes it harder for expert goalkeepers to perceptually judge where the curved free-kicks will cross the goal line, it is unknown how this affects the goalkeeper's actual movements.
Methodology/Principal Findings: Here, an in-depth analysis of goalkeepers' hand movements in immersive, interactive virtual reality shows that they do not fully account for spin-induced lateral ball acceleration. Hand movements were found to be biased in the direction of initial ball heading, and for curved free-kicks this resulted in biases in a direction opposite to those necessary to save the free-kick. These movement errors result in less time to cover a now greater distance to stop the ball entering the goal. These and other details of the interceptive behaviour are explained using a simple mathematical model which shows how the goalkeeper controls his movements online with respect to the ball's current heading direction. Furthermore our results and model suggest how visual landmarks, such as the goalposts in this instance, may constrain the extent of the movement biases.
Conclusions: While it has previously been shown that humans can internalize the effects of gravitational acceleration, these results show that it is much more difficult for goalkeepers to account for spin-induced visual acceleration, which varies from situation to situation. The limited sensitivity of the human visual system for detecting acceleration, suggests that curved free-kicks are an important goal-scoring opportunity in the game of soccer.
Resumo:
The research presented in this paper proposes a set of design guidelines in the context of a Parkinson's Disease (PD) rehabilitation design framework for the development of serious games for the physical therapy of people with PD. The game design guidelines provided in the paper are informed by the study of the literature review and lessons learned from the pilot testing of serious games designed to suit the requirements of rehabilitation of patients with Parkinson's Disease. The proposed PD rehabilitation design framework employed for the games pilot testing utilises a low-cost, customized and off-the-shelf motion capture system (employing commercial game controllers) developed to cater for the unique requirement of the physical therapy of people with PD. Although design guidelines have been proposed before for the design of serious games in health, this is the first research paper to present guidelines for the design of serious games specifically for PD motor rehabilitation.
Resumo:
In order to use virtual reality as a sport analysis tool, we need to be sure that an immersed athlete reacts realistically in a virtual environment. This has been validated for a real handball goalkeeper facing a virtual thrower. However, we currently ignore which visual variables induce a realistic motor behavior of the immersed handball goalkeeper. In this study, we used virtual reality to dissociate the visual information related to the movements of the player from the visual information related to the trajectory of the ball. Thus, the aim is to evaluate the relative influence of these different visual information sources on the goalkeeper's motor behavior. We tested 10 handball goalkeepers who had to predict the final position of the virtual ball in the goal when facing the following: only the throwing action of the attacking player (TA condition), only the resulting ball trajectory (BA condition), and both the throwing action of the attacking player and the resulting ball trajectory (TB condition). Here we show that performance was better in the BA and TB conditions, but contrary to expectations, performance was substantially worse in the TA condition. A significant effect of ball landing zone does, however, suggest that the relative importance between visual information from the player and the ball depends on the targeted zone in the goal. In some cases, body-based cues embedded in the throwing actions may have a minor influence on the ball trajectory and vice versa. Kinematics analysis was then combined with these results to determine why such differences occur depending on the ball landing zone and consequently how it can clarify the role of different sources of visual information on the motor behavior of an athlete immersed in a virtual environment.
Resumo:
This thesis describes the design and implementation of a reliable centimeter-level indoor positioning system fully compatible with a conventional smartphone. The proposed system takes advantage of the smartphone audio I/O and processing capabilities to perform acoustic ranging in the audio band using non-invasive audio signals and it has been developed having in mind applications that require high accuracy, such as augmented reality, virtual reality, gaming and audio guides. The system works in a distributed operation mode, i.e. each smartphone is able to obtain its own position using only acoustic signals. To support the positioning system, a Wireless Sensor Network (WSN) of synchronized acoustic beacons is used. To keep the infrastructure in sync we have developed an Automatic Time Synchronization and Syntonization (ATSS) protocol with a standard deviation of the sync offset error below 1.25 μs. Using an improved Time Difference of Arrival (TDoA) estimation approach (which takes advantage of the beacon signals’ periodicity) and by performing Non-Line-of-Sight (NLoS) mitigation, we were able to obtain very stable and accurate position estimates with an absolute mean error of less than 10 cm in 95% of the cases and a mean standard deviation of 2.2 cm for a position refresh period of 350 ms.
Resumo:
Innovation in virtual reality and motion sensing devices is pushing the development of virtual communication platforms towards completely immersive scenarios, which require full user interaction and create complex sensory experiences. This evolution influences user experiences and creates new paradigms for interaction, leading to an increased importance of user evaluation and assessment on new systems interfaces and usability, to validate platform design and development from the users’ point of view. The REVERIE research project aims to develop a virtual environment service for realistic inter-personal interaction. This paper describes the design challenges faced during the development process of user interfaces and the adopted methodological approach to user evaluation and assessment.
Resumo:
We live in a changing world. At an impressive speed, every day new technological resources appear. We increasingly use the Internet to obtain and share information, and new online communication tools are emerging. Each of them encompasses new potential and creates new audiences. In recent years, we witnessed the emergence of Facebook, Twitter, YouTube and other media platforms. They have provided us with an even greater interactivity between sender and receiver, as well as generated a new sense of community. At the same time we also see the availability of content like it never happened before. We are increasingly sharing texts, videos, photos, etc. This poster intends to explore the potential of using these new online communication tools in the cultural sphere to create new audiences, to develop of a new kind of community, to provide information as well as different ways of building organizations’ memory. The transience of performing arts is accompanied by the need to counter that transience by means of documentation. This desire to ‘save’ events reaches its expression with the information archive of the different production moments as well as the opportunity to record the event and present it through, for instance, digital platforms. In this poster we intend to answer the following questions: which online communication tools are being used to engage audiences in the cultural sphere (specifically between theater companies in Lisbon)? Is there a new relationship with the public? Are online communication tools creating a new kind of community? What changes are these tools introducing in the creative process? In what way the availability of content and its archive contribute to the organization memory? Among several references, we will approach the two-way communication model that James E. Grunig & Todd T. Hunt (1984) already presented and the concept of mass self-communication of Manuel Castells (2010). Castells also tells us that we have moved from traditional media to a system of communication networks. For Scott Kirsner (2010), we have entered an era of digital creativity, where artists have the tools to do what they imagined and the public no longer wants to just consume cultural goods, but instead to have a voice and participate. The creativity process is now depending on the public choice as they wander through the screen. It is the receiver who owns an object which can be exchanged. Virtual reality has encouraged the receiver to abandon its position of passive observer and to become a participant agent, which implies a challenge to organizations: inventing new forms of interfaces. Therefore, we intend to find new and effective online tools that can be used by cultural organizations; the best way to manage them; to show how organizations can create a community with the public and how the availability of online content and its archive can contribute to the organizations’ memory.
Resumo:
O Arquivo tem como funções primordiais, entre outras, comunicar e difundir o seu património, sendo as exposições um modo eficaz de o fazer. Por meio destas, o Arquivo dá a conhecer os conjuntos documentais que encerra e divulga o trabalho que leva a cabo. O presente trabalho tem numa primeira instância o objectivo de abordar três das exposições levadas a cabo na DGLAB, sendo descrito o trabalho levado a cabo e o modo como este contribuiu para o desenvolvimento do produto final. O desenvolvimento e ampliação da utilização das tecnologias de informação e comunicação (TIC) proporcionam aos Arquivos e outras instituições, como Bibliotecas e Museus, a possibilidade de acentuar estas duas funções, por meio da criação na web de exposições virtuais, que utilizam as ferramentas que advêm destas novas tecnologias. Neste sentido, é necessário compreender como é que as diferentes instituições fazem uso destas ferramentas na criação das suas exposições virtuais, uma vez que existem distintas tipologias com diversas aplicações. Procura-se assim nesta linha, escolher boas práticas de exposições virtuais e detalhar as suas potencialidades de modo a retirar ideias que se coadunem com as especificidades da exposição física para a qual se planeia criar uma exposição virtual. Este Relatório de Estágio procura assim responder à questão: Como pode uma exposição virtual valorizar uma exposição física de modo a contribuir para o desenvolvimento das funções de comunicação/ difusão na DGARQ?