981 resultados para Adaptive Mesh Refinement (AMR)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regional and remote communities in tropical Queensland are among Australia’s most vulnerable in the face of climate change. At the same time, these socially and economically vulnerable regions house some of Australia’s most significant biodiversity values. Past approaches to terrestrial biodiversity management have focused on tackling biophysical interventions through the use of biophysical knowledge. An equally important focus should be placed on building regional-scale community resilience if some of the worst biodiversity impacts of climate change are to be avoided or mitigated. Despite its critical need, more systemic or holistic approaches to natural resource management have been rarely trialed and tested in a structured way. Currently, most strategic interventions in improving regional community resilience are ad hoc, not theory-based and short term. Past planning approaches have not been durable, nor have they been well informed by clear indicators. Research into indicators for community resilience has been poorly integrated within adaptive planning and management cycles. This project has aimed to resolve this problem by: * Reviewing the community and social resilience and adaptive planning literature to reconceptualise an improved framework for applying community resilience concepts; * Harvesting and extending work undertaken in MTSRF Phase 1 to identifying the learnings emerging from past MTSRF research; * Distilling these findings to identify new theoretical and practical approaches to the application of community resilience in natural resource use and management; * Reconsidering the potential interplay between a region’s biophysical and social planning processes, with a focus on exploring spatial tools to communicate climate change risk and its consequent environmental, economic and social impacts, and; * Trialling new approaches to indicator development and adaptive planning to improve community resilience, using a sub-regional pilot in the Wet Tropics. In doing so, we also looked at ways to improve the use and application of relevant spatial information. Our theoretical review drew upon the community development, psychology and emergency management literature to better frame the concept of community resilience relative to aligned concepts of social resilience, vulnerability and adaptive capacity. Firstly, we consider community resilience as a concept that can be considered at a range of scales (e.g. regional, locality, communities of interest, etc.). We also consider that overall resilience at higher scales will be influenced by resilience levels at lesser scales (inclusive of the resilience of constituent institutions, families and individuals). We illustrate that, at any scale, resilience and vulnerability are not necessarily polar opposites, and that some understanding of vulnerability is important in determining resilience. We position social resilience (a concept focused on the social characteristics of communities and individuals) as an important attribute of community resilience, but one that needs to be considered alongside economic, natural resource, capacity-based and governance attributes. The findings from the review of theory and MTSRF Phase 1 projects were synthesized and refined by the wider project team. Five predominant themes were distilled from this literature, research review and an expert analysis. They include the findings that: 1. Indicators have most value within an integrated and adaptive planning context, requiring an active co-research relationship between community resilience planners, managers and researchers if real change is to be secured; 2. Indicators of community resilience form the basis for planning for social assets and the resilience of social assets is directly related the longer term resilience of natural assets. This encourages and indeed requires the explicit development and integration of social planning within a broader natural resource planning and management framework; 3. Past indicator research and application has not provided a broad picture of the key attributes of community resilience and there have been many attempts to elicit lists of “perfect” indicators that may never be useful within the time and resource limitations of real world regional planning and management. We consider that modeling resilience for proactive planning and prediction purposes requires the consideration of simple but integrated clusters of attributes; 4. Depending on time and resources available for planning and management, the combined use of well suited indicators and/or other lesser “lines of evidence” is more flexible than the pursuit of perfect indicators, and that; 5. Index-based, collaborative and participatory approaches need to be applied to the development, refinement and reporting of indicators over longer time frames. We trialed the practical application of these concepts via the establishment of a collaborative regional alliance of planners and managers involved in the development of climate change adaptation strategies across tropical Queensland (the Gulf, Wet Tropics, Cape York and Torres Strait sub-regions). A focus on the Wet Tropics as a pilot sub-region enabled other Far North Queensland sub-region’s to participate and explore the potential extension of this approach. The pilot activities included: * Further exploring ways to innovatively communicate the region’s likely climate change scenarios and possible environmental, economic and social impacts. We particularly looked at using spatial tools to overlay climate change risks to geographic communities and social vulnerabilities within those communities; * Developing a cohesive first pass of a State of the Region-style approach to reporting community resilience, inclusive of regional economic viability, community vitality, capacitybased and governance attributes. This framework integrated a literature review, expert (academic and community) and alliance-based contributions; and * Early consideration of critical strategies that need to be included in unfolding regional planning activities with Far North Queensland. The pilot assessment finds that rural, indigenous and some urban populations in the Wet Tropics are highly vulnerable and sensitive to climate change and may require substantial support to adapt and become more resilient. This assessment finds that under current conditions (i.e. if significant adaptation actions are not taken) the Wet Tropics as a whole may be seriously impacted by the most significant features of climate change and extreme climatic events. Without early and substantive action, this could result in declining social and economic wellbeing and natural resource health. Of the four attributes we consider important to understanding community resilience, the Wet Tropics region is particularly vulnerable in two areas; specifically its economic vitality and knowledge, aspirations and capacity. The third and fourth attributes, community vitality and institutional governance are relatively resilient but are vulnerable in some key respects. In regard to all four of these attributes, however, there is some emerging capacity to manage the possible shocks that may be associated with the impacts of climate change and extreme climatic events. This capacity needs to be carefully fostered and further developed to achieve broader community resilience outcomes. There is an immediate need to build individual, household, community and sectoral resilience across all four attribute groups to enable populations and communities in the Wet Tropics region to adapt in the face of climate change. Preliminary strategies of importance to improve regional community resilience have been identified. These emerging strategies also have been integrated into the emerging Regional Development Australia Roadmap, and this will ensure that effective implementation will be progressed and coordinated. They will also inform emerging strategy development to secure implementation of the FNQ 2031 Regional Plan. Of most significance in our view, this project has taken a co-research approach from the outset with explicit and direct importance and influence within the region’s formal planning and management arrangements. As such, the research: * Now forms the foundations of the first attempt at “Social Asset” planning within the Wet Tropics Regional NRM Plan review; * Is assisting Local government at regional scale to consider aspects of climate change adaptation in emerging planning scheme/community planning processes; * Has partnered the State government (via the Department of Infrastructure and Planning and Regional Managers Coordination Network Chair) in progressing the Climate Change adaptation agenda set down within the FNQ 2031 Regional Plan; * Is informing new approaches to report on community resilience within the GBRMPA Outlook reporting framework; and * Now forms the foundation for the region’s wider climate change adaptation priorities in the Regional Roadmap developed by Regional Development Australia. Through the auspices of Regional Development Australia, the outcomes of the research will now inform emerging negotiations concerning a wider package of climate change adaptation priorities with State and Federal governments. Next stage research priorities are also being developed to enable an ongoing alliance between researchers and the region’s climate change response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"This work considers a mobile service robot which uses an appearance-based representation of its workplace as a map, where the current view and the map are used to estimate the current position in the environment. Due to the nature of real-world environments such as houses and offices, where the appearance keeps changing, the internal representation may become out of date after some time. To solve this problem the robot needs to be able to adapt its internal representation continually to the changes in the environment. This paper presents a method for creating an adaptive map for long-term appearance-based localization of a mobile robot using long-term and short-term memory concepts, with omni-directional vision as the external sensor."--publisher website

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Real-world environments such as houses and offices change over time, meaning that a mobile robot’s map will become out of date. In previous work we introduced a method to update the reference views in a topological map so that a mobile robot could continue to localize itself in a changing environment using omni-directional vision. In this work we extend this longterm updating mechanism to incorporate a spherical metric representation of the observed visual features for each node in the topological map. Using multi-view geometry we are then able to estimate the heading of the robot, in order to enable navigation between the nodes of the map, and to simultaneously adapt the spherical view representation in response to environmental changes. The results demonstrate the persistent performance of the proposed system in a long-term experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Real-world environments such as houses and offices change over time, meaning that a mobile robot’s map will become out of date. In this work, we introduce a method to update the reference views in a hybrid metrictopological map so that a mobile robot can continue to localize itself in a changing environment. The updating mechanism, based on the multi-store model of human memory, incorporates a spherical metric representation of the observed visual features for each node in the map, which enables the robot to estimate its heading and navigate using multi-view geometry, as well as representing the local 3D geometry of the environment. A series of experiments demonstrate the persistence performance of the proposed system in real changing environments, including analysis of the long-term stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An improved Phase-Locked Loop (PLL) for extracting phase and frequency of the fundamental component of a highly distorted grid voltage is presented. The structure of the single-phase PLL is based on the Synchronous Reference Frame (SRF) PLL and uses an All Pass Filter (APF) to generate the quadrature component from the single phase input voltage. In order to filter the harmonic content, a Moving Average Filter (MAF) is used, and performance is improved by designing a lead compensator and also a feed-forward compensator. The simulation results are compared to show the improved performance with feed-forward. In addition, the frequency dependency of MAF is dealt with by a proposed method for adaption to the frequency. This method changes the window size based on the frequency on a sample-by-sample basis. By using this method, the speed of resizing can be reduced in order to decrease the output ripples caused by window size variations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Social resilience concepts are gaining momentum in environmental planning through an emerging understanding of the socio-ecological nature of biophysical systems. There is a disconnect, however, between these concepts and the sociological and psychological literature related to social resilience. Further still, both schools of thought are not well connected to the concepts of social assessment (SA) and social impact assessment (SIA) that are the more standard tools supporting planning and decision-making. This raises questions as to how emerging social resilience concepts can translate into improved SA/SIA practices to inform regional-scale adaptation. Through a review of the literature, this paper suggests that more cross-disciplinary integration is needed if social resilience concepts are to have a genuine impact in helping vulnerable regions tackle climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: We examine the interaction between trait resilience and control in predicting coping and performance. Drawing on a person–environment fit perspective, we hypothesized resilient individuals would cope and perform better in demanding work situations when control was high. In contrast, those low in resilience would cope and perform better when control was low. Recognizing the relationship between trait resilience and performance also could be indirect, adaptive coping was examined as a mediating mechanism through which high control enables resilient individuals to demonstrate better performance. Methodology: In Study 1 (N = 78) and Study 2 (N = 94), participants completed a demanding inbox task in which trait resilience was measured and high and low control was manipulated. Study 3 involved surveying 368 employees on their trait resilience, control, and demand at work (at Time 1), and coping and performance 1 month later at Time 2. Findings: For more resilient individuals, high control facilitated problem-focused coping (Study 1, 2, and 3), which was indirectly associated with higher subjective performance (Study 1), mastery (Study 2), adaptive, and proficient performance (Study 3). For more resilient individuals, high control also facilitated positive reappraisal (Study 2 and 3), which was indirectly associated with higher adaptive and proficient performance (Study 3). Implications: Individuals higher in resilience benefit from high control because it enables adaptive coping. Originality/value: This research makes two contributions: (1) an experimental investigation into the interaction of trait resilience and control, and (2) investigation of coping as the mechanism explaining better performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents new schemes for recursive estimation of the state transition probabilities for hidden Markov models (HMM's) via extended least squares (ELS) and recursive state prediction error (RSPE) methods. Local convergence analysis for the proposed RSPE algorithm is shown using the ordinary differential equation (ODE) approach developed for the more familiar recursive output prediction error (RPE) methods. The presented scheme converges and is relatively well conditioned compared with the ...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper new online adaptive hidden Markov model (HMM) state estimation schemes are developed, based on extended least squares (ELS) concepts and recursive prediction error (RPE) methods. The best of the new schemes exploit the idempotent nature of Markov chains and work with a least squares prediction error index, using a posterior estimates, more suited to Markov models then traditionally used in identification of linear systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper develops maximum likelihood (ML) estimation schemes for finite-state semi-Markov chains in white Gaussian noise. We assume that the semi-Markov chain is characterised by transition probabilities of known parametric from with unknown parameters. We reformulate this hidden semi-Markov model (HSM) problem in the scalar case as a two-vector homogeneous hidden Markov model (HMM) problem in which the state consist of the signal augmented by the time to last transition. With this reformulation we apply the expectation Maximumisation (EM ) algorithm to obtain ML estimates of the transition probabilities parameters, Markov state levels and noise variance. To demonstrate our proposed schemes, motivated by neuro-biological applications, we use a damped sinusoidal parameterised function for the transition probabilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mean shift tracker has achieved great success in visual object tracking due to its efficiency being nonparametric. However, it is still difficult for the tracker to handle scale changes of the object. In this paper, we associate a scale adaptive approach with the mean shift tracker. Firstly, the target in the current frame is located by the mean shift tracker. Then, a feature point matching procedure is employed to get the matched pairs of the feature point between target regions in the current frame and the previous frame. We employ FAST-9 corner detector and HOG descriptor for the feature matching. Finally, with the acquired matched pairs of the feature point, the affine transformation between target regions in the two frames is solved to obtain the current scale of the target. Experimental results show that the proposed tracker gives satisfying results when the scale of the target changes, with a good performance of efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the rates of growth of the regret in online convex optimization. First, we show that a simple extension of the algorithm of Hazan et al eliminates the need for a priori knowledge of the lower bound on the second derivatives of the observed functions. We then provide an algorithm, Adaptive Online Gradient Descent, which interpolates between the results of Zinkevich for linear functions and of Hazan et al for strongly convex functions, achieving intermediate rates between [square root T] and [log T]. Furthermore, we show strong optimality of the algorithm. Finally, we provide an extension of our results to general norms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Recent advances in Immunology highlighted the importance of local properties on the overall progression of HIV infection. In particular, the gastrointestinal tract is seen as a key area during early infection, and the massive cell depletion associated with it may influence subsequent disease progression. This motivated the development of a large-scale agent-based model. Results Lymph nodes are explicitly implemented, and considerations on parallel computing permit large simulations and the inclusion of local features. The results obtained show that GI tract inclusion in the model leads to an accelerated disease progression, during both the early stages and the long-term evolution, compared to a theoretical, uniform model. Conclusions These results confirm the potential of treatment policies currently under investigation, which focus on this region. They also highlight the potential of this modelling framework, incorporating both agent-based and network-based components, in the context of complex systems where scaling-up alone does not result in models providing additional insights.