998 resultados para Accumulation rate, sand > 63 µm
Resumo:
The upper Tortonian Metochia marls on the island of Gavdos provide an ideal geological archive to trace variations in Aegean sediment supply as well as changes in the North African monsoon system. A fuzzy-cluster analysis on the multiproxy geochemical and rock magnetic dataset of the astronomically tuned sedimentary succession shows a dramatic shift in the dominance of 'Aegean tectonic' clusters to 'North African climate' clusters. The tectonic signature, traced by the starvation of the Cretan sediment, now enables to date the late Tortonian basin foundering on Crete, related to the tectonic break-up of the Aegean landmass, at c. 8.2 Ma. The synchronous decrease in the North African climate proxies is interpreted to indicate a change in the depositional conditions of the sink rather than a climatic change in the African source. This illustrates that interpretations of climate proxies require a multiproxy approach which also assesses possible contributions of regional tectonism.
Resumo:
The loess-paleosol sequence in China is one of the best archives for studying paleoenvironmental and paleoclimatic processes. The loess deposits in the coast of the Bohai Sea are suitable for the study of aridification in the northern China during glacial periods (fig.2-1). In this paper, stratigraphy was correlated by using magnetic susceptibility, grain size, and thermoluminence (TL) and accelerater mass spectrometer (AMS) ~(14)C ages. Based on the loess records, an interpretation has been made for paleoenvironmental changes on the coast of the Bohai Sea during the last glacials. The results of magnetic susceptibility, grain size, biostratigraphy, TL and ~(14)C dating, suggest that the loess-paleosol sequence in the coast of the Bohai Sea is discontinuous. The loess deposits correlated with the marine δ~(18)O stage 2 are usually absent in some profiles. Also, the thickness of the loess deposits in the same period varied significantly in different sections. In the coast of the Bohai Sea, the higher magnetic susceptibility corresponds to the finer grain size, consistent with the results of the Loess Plateau. It is indicated that the changes in magnetic susceptibility and grain size may record the paleoclimatic fluctuations of the last glacial. Although the loess deposits during the last glacial have been slightly altered by slope runoff, they have still remained main characters as the representative loess deposits of the Loess Plateau. During the last glacial, the less accumulation rate in the coast of the Bohai Sea is similar to that of the desert-loess transition zone in the northwestern Loess Plateau, and the all section contain high concentrations of sand (>60μm), indicate that the aridification in the Bohai Sea occurred during the glacial. But the changes in sand content of loess deposits along a north-south transect of the Bohai Sea and the changes of magnetic susceptibility implicate that desertification might not occur in the shelf of the Bohai Sea during the last glacial. The frequent fluctuations of summer monsoon during the marine δ~(18)O stage 4 are demonstrated by magnetic susceptibility, frequency-dependent susceptibility and the abundance of foraminifera. 46 genera, 71 species of foraminifera were identified from 138 loess samples. Almost all of the foraminifera are present in the last glacial loess, but the distribution patterns of foraminifera show significant temporal changes. The results of magnetic susceptibility, grain size and XRD indicate that not only sea-level changes had influences on foraminifera abundance, but also variations in sediment flux by rivers when sea-level drops might control the abundance of foraminifera. In addition, the diversity and exquitability of the foraminifera suggest that the frequent fluctuations of foraminifera fossil abundance during the marine δ~(18)O stages could be partly attributed to leaching. In summary, the changes in foraminifera of abundance related to the paleoclimatic variations, and the aridification extends to the coast of the eastern China during the last glacial.
Resumo:
Accurate high-resolution records of snow accumulation rates in Antarctica are crucial for estimating ice sheet mass balance and subsequent sea level change. Snowfall rates at Law Dome, East Antarctica, have been linked with regional atmospheric circulation to the mid-latitudes as well as regional Antarctic snowfall. Here, we extend the length of the Law Dome accumulation record from 750 years to 2035 years, using recent annual layer dating that extends to 22 BCE. Accumulation rates were calculated as the ratio of measured to modelled layer thicknesses, multiplied by the long-term mean accumulation rate. The modelled layer thicknesses were based on a power-law vertical strain rate profile fitted to observed annual layer thickness. The periods 380–442, 727–783 and 1970–2009 CE have above-average snow accumulation rates, while 663–704, 933–975 and 1429–1468 CE were below average, and decadal-scale snow accumulation anomalies were found to be relatively common (74 events in the 2035-year record). The calculated snow accumulation rates show good correlation with atmospheric reanalysis estimates, and significant spatial correlation over a wide expanse of East Antarctica, demonstrating that the Law Dome record captures larger-scale variability across a large region of East Antarctica well beyond the immediate vicinity of the Law Dome summit. Spectral analysis reveals periodicities in the snow accumulation record which may be related to El Niño–Southern Oscillation (ENSO) and Interdecadal Pacific Oscillation (IPO) frequencies.
Resumo:
Two experiments were carried out under greenhouse conditions to study the accumulation and distribution of dry mass and macronutrients in maize and Ipomoea hederifolia. Plants of both species had grown, separately, in pots with sand substrate and irrigation with nutrient solution. Treatments were represented by the times of evaluation, realized in intervals of 14 days, starting at 21 days after emergence (DAE). A maize plant showed slight growth up to 30 DAE, when dry mass allocation was higher in roots and leaves (80%); while an I. hederifolia plant, up to 50 DAE, when the allocation of dry mass was higher in offshoots and leaves (79). Dry mass accumulation was almost five times greater in maize (134 g per plant) than in I. hederifolia (29 g per plant). The average values of N and K contents were greater in I. hederifolia. Maximum accumulations of macronutrients by maize were 1,431; 474; 1,832; 594; 340, and 143 mg per plant, while by I. hederifolia, 727; 52; 810; 350; 148, and 65 mg per plant, for N, P, K, Ca, Mg, and S, respectively. Mean accumulation rate of dry mass and macronutrients by maize plants was crescent up to 87 DAE, reaching the maximum value at 103 DAE; while being crescent up to 121 DAE by I. hederifolia plants, reaching the maximum value at 138 DAE. Thus, beyond the interference on harvesting process, a population of I. hederifolia also can compete with maize crop for nutrients.
Resumo:
We found a significant positive correlation between local summer air temperature (May-September) and the annual sediment mass accumulation rate (MAR) in Lake Silvaplana (46°N, 9°E, 1800 m a.s.l.) during the twentieth century (r = 0.69, p < 0.001 for decadal smoothed series). Sediment trap data (2001-2005) confirm this relation with exceptionally high particle yields during the hottest summer of the last 140 years in 2003. On this base we developed a decadal-scale summer temperature reconstruction back to AD 1580. Surprisingly, the comparison of our reconstruction with two other independent regional summer temperature reconstructions (based on tree-rings and documentary data) revealed a significant negative correlation for the pre-1900 data (ie, late ‘Little Ice Age’). This demonstrates that the correlation between MAR and summer temperature is not stable in time and the actualistic principle does not apply in this case. We suggest that different climatic regimes (modern/‘Little Ice Age’) lead to changing state conditions in the catchment and thus to considerably different sediment transport mechanisms. Therefore, we calibrated our MAR data with gridded early instrumental temperature series from AD 1760-1880 (r = -0.48, p < 0.01 for decadal smoothed series) to properly reconstruct the late LIA climatic conditions. We found exceptionally low temperatures between AD 1580 and 1610 (0.75°C below twentieth-century mean) and during the late Maunder Minimum from AD 1680 to 1710 (0.5°C below twentieth-century mean). In general, summer temperatures did not experience major negative departures from the twentieth-century mean during the late ‘Little Ice Age’. This compares well with the two existing independent regional reconstructions suggesting that the LIA in the Alps was mainly a phenomenon of the cold season.
Resumo:
The Bodélé Depression (Chad) in the central Sahara/Sahel region of Northern Africa is the most important source of mineral dust to the atmosphere globally. The Bodélé Depression is purportedly the largest source of Saharan dust reaching the Amazon Basin by transatlantic transport. Here, we have undertaken a comprehensive study of surface sediments from the Bodélé Depression and dust deposits (Chad, Niger) in order to characterize geochemically and isotopically (Sr, Nd and Pb isotopes) this dust source, and evaluate its importance in present and past African dust records. We similarly analyzed sedimentary deposits from the Amazonian lowlands in order to assess postulated accumulation of African mineral dust in the Amazon Basin, as well as its possible impact in fertilizing the Amazon rainforest. Our results identify distinct sources of different ages and provenance in the Bodélé Depression versus the Amazon Basin, effectively ruling out an origin for the Amazonian deposits, such as the Belterra Clay Layer, by long-term deposition of Bodélé Depression material. Similarly, no evidence for contributions from other potential source areas is provided by existing isotope data (Sr, Nd) on Saharan dusts. Instead, the composition of these Amazonian deposits is entirely consistent with derivation from in-situ weathering and erosion of the Precambrian Amazonian craton, with little, if any, Andean contribution. In the Amazon Basin, the mass accumulation rate of eolian dust is only around one-third of the vertical erosion rate in shield areas, suggesting that Saharan dust is “consumed” by tropical weathering, contributing nutrients and stimulating plant growth, but never accumulates as such in the Amazon Basin. The chemical and isotope compositions found in the Bodélé Depression are varied at the local scale, and have contrasting signatures in the “silica-rich” dry lake-bed sediments and in the “calcium-rich” mixed diatomites and surrounding sand material. This unexpected finding implies that the Bodélé Depression material is not “pre-mixed” at the source to provide a homogeneous source of dust. Rather, different isotope signatures can be emitted depending on subtle vagaries of dust-producing events. Our characterization of the Bodélé Depression components indicate that the Bodélé “calcium-rich” component, identified here, is most likely released via eolian processes of sand grain saltation and abrasion and may be significant in the overall global budget of dusts carried out by the Harmattan low-level jet during the winter.
Resumo:
We investigate causes of the stratigraphic variation revealed in a 177 km, 400 MHz short-pulse radar profile of firn from West Antarctica. The profile covers 56 m depth, and its direction was close to those of the ice flow and mean wind. The average, near-surface accumulation rates calculated from the time delays of one radar horizon consistently show minima on leeward slopes and maxima on windward slopes, confirming an earlier study based on stake observations. The stratigraphic variation includes up to 30 m depth variation in individual horizons over tens of km, fold limbs that become progressively steeper with depth, and fold-hinge loci that change direction or propagate down-ice with depth over distances far less than predicted by the ice speeds. We use an accumulation rate model to show how local rate anomalies and the effect of ice speed upon a periodic variation in accumulation rate cause these phenomena, and we reproduce two key features seen in the stratigraphic variations. We conclude that the model provides an explanation of changes in spatial stratigraphy and local measures of accumulation history given the constraints of surface topography, ice and wind velocities, and a general accumulation rate for an area.
Resumo:
lsochronal layers in firn detected with ground-penetrating radar (GPR) and dated using results from ice-core analyses are used to calculate accumulation rates along a 100 km across-flow profile in West Antarctica. Accumulation rates are shown to be highly variable over short distances. Elevation measurements from global positioning system surveys show that accumulation rates derived from shallow horizons correlate well with surface undulations, which implies that wind redistribution of snow is the leading cause of this variability. Temporal changes in accumulation rate over 25-185 year intervals are smoothed to along-track length scales comparable to surface undulations in order to identify trends in accumulation that are likely related to changes in climate. Results show that accumulation rates along this profile have decreased in recent decades, which is consistent with core-derived time series of annual accumulation rates measured at the two ends of the radar profile. These results suggest that temporal variability observed in accumulation-rate records from ice cores and GPR profiles can be obscured by spatial influences, although it is possible to resolve temporal signals if the effects of local topography and ice flow are quantified and removed.
Resumo:
The Cenozoic ice-rafted debris (IRD) history of the central Arctic is reconstructed utilizing the terrigenous coarse sand fraction in IODP 302 cores from 0 to 273 meters composite depth. This Holocene - middle Eocene quantitative record of terrigenous sand accumulation on the Lomonosov Ridge, along with qualitative information on grain texture and composition, confirms the interpretation that ice initiation (sea ice and glacial ice) occurred ~46 Ma in the Arctic, and provides a long-term pattern of Arctic ice expansion and decay since the middle Eocene. IRD mass accumulation rates range from 0 to 0.13 g/cm2/ka in the middle Eocene and from 0 to 0.36 g/cm2/ka in the Neogene. IRD mass accumulation rate (MAR) maxima in the Miocene and Pliocene cooccur with either glacial initiation or intensification in the sub-Arctic. The 46.25 Ma IRD onset in the central Arctic slightly precedes the earliest evidence of ice in the Antarctic, and compares in timing with a >1000 ppm decrease in atmospheric concentrations of CO2. The decline of pCO2 in the middle Eocene may have driven both poles across the temperature threshold that enabled the nucleation of glaciers on land and partial freezing of the surface Arctic Ocean, especially during times of low insolation.
Resumo:
Mass accumulation rates (MAR) of different components of North Pacific deep-sea sediment provide detailed information about the timing of the onset of major Northern Hemisphere glaciation that occurred at 2.65 Ma. An increase in explosive volcanism in the Kamchatka-Kurile and Aleutian arcs occured at this same time, suggesting a link between volcanism and glaciation. Sediments recovered by piston-coring techniques during ODP Leg 145 provide a unique opportunity to undertake a detailed test of this possibility. Here we use volcanic glass as a proxy for explosive volcanism and ice-rafted debris (IRD) as a proxy for glaciation. The MAR of both glass and IRD increase markedly at 2.65 Ma. Further, the flux of the volcanic glass increased just prior the flix of ice-radted material, suggesting that the cooling resulting from explosive volcanic eruptions may have been the ultimate trigger for the mid-Pliocene glacial intensification.
Resumo:
Sites 545 and 547 collectively penetrated 629 m of mid-Cretaceous strata (upper Aptian to upper Cenomanian) off central Morocco during Leg 79 of the Deep Sea Drilling Project. Site 545, at the base of the steep Mazagan Escarpment, records a virtually complete succession of hemipelagic sediments of early late Aptian to middle Cenomanian age. Minor faunal recycling occurred throughout much of the upper Aptian to middle Albian part of the sequence (Cores 55 through 41), reflecting bottom currents along the Mazagan Escarpment. This may be related to the strong upwelling regime and high surface water productivity over Site 545 during the latest Aptian through middle Albian. The upwelling system ceased rather abruptly in this area in late middle Albian time. Recycling of older strata by bottom currents also ceased in the late middle Albian and resulted in a slower average accumulation rate in the upper Albian to middle Cenomanian section of Site 545 (Cores 40 through 28). However, intervals of pebbly claystone conglomerates in Cores 40 and 34 record sporadic instability in the slope adjacent to Site 545. Site 547, located only about 15 km seaward, is situated in a small sub-basin adjacent to the basement block drilled by Site 544. It contains an expanded upper Albian to upper Cenomanian sequence as a result of the numerous conglomeratic intervals throughout much of the section. In contrast to Site 545, the conglomerates were not derived from older strata cropping out on the Mazagan Escarpment; rather, they originated penecontemporaneously from a local unstable slope. A detailed biostratigraphic framework based on planktonic foraminifers is established for the mid-Cretaceous sections of Sites 545 and 547 and a new composite zonal scheme is proposed for the early late Aptian through early late Cenomanian interval. Fifty-five species are recognized and illustrated
Resumo:
The study compiles the controlling factors for organic matter sedimentation patterns from a suite of organogeochemical parameters in surface sediments off Spitsbergen and direct seabed observations using a Remotely Operated Vehicle (ROV). In addition we assess its storage rates as well as the potential of carbon sinks on the northwestern margin of the Barents Sea with short sediment cores from a selected fjord environment (Storfjord). While sedimentation in the fjords is mainly controlled by river/meltwater discharge and coastal erosion by sea ice/glaciers resulting in high supply of terrigenous organic matter, Atlantic water inflow, and thus enhanced marine organic matter supply, characterizes the environment on the outer shelf and slope. Local deviations from this pattern, particularly on the shelf, are due to erosion and out washing of fine-grained material by bottom currents. Spots dominated by marine productivity close to the island have been found at the outer Isfjord and west off Prins Karls Forland as well as off the Kongsfjord/Krossfjord area and probably reflect local upwelling of nutrient-rich Atlantic water-derived water masses. Accumulation rates of marine organic carbon as well as reconstructed primary productivities decreased since the middle of the last century. Negative correlation of the Isfjord temperature record with reconstructed productivities in the Storfjord could be explained by a reduced annual duration of the marginal ice zone in the area due to global warming. Extremely high accumulation rates of marine organic carbon between 5.4 and 17.2 g/m**2/yr mark the Storfjord area, and probably high-latitude fjord environments in general, as a sink for carbon dioxide.