880 resultados para Abnormalities.
Resumo:
Acute intermittent porphyria (AIP, MIM #176000) is an inherited metabolic disease due to a partial deficiency of the third enzyme, hydroxymethylbilane synthase (HMBS, EC: 4.3.1.8), in the haem biosynthesis. Neurological symptoms during an acute attack, which is the major manifestation of AIP, are variable and relatively rare, but may endanger a patient's life. In the present study, 12 Russian and two Finnish AIP patients with severe neurological manifestations during an acute attack were studied prospectively from 1995 to 2006. Autonomic neuropathy manifested as abdominal pain (88%), tachycardia (94%), hypertension (75%) and constipation (88%). The most common neurological sign was acute motor peripheral neuropathy (PNP, 81%) often associated with neuropathic sensory loss (54%) and CNS involvement (85%). Despite heterogeneity of the neurological manifestations in our patients with acute porphyria, the major pattern of PNP associated with abdominal pain, dysautonomia, CNS involvement and mild hepatopathy could be demonstrated. If more strict inclusion criteria for biochemical abnormalities (>10-fold increase in excretion of urinary PBG) are applied, neurological manifestations in an acute attack are probably more homogeneous than described previously, which suggests that some of the neurological patients described previously may not have acute porphyria but rather secondary porphyrinuria. Screening for acute porphyria using urinary PBG is useful in a selected group of neurological patients with acute PNP or encephalopathy and seizures associated with pain and dysautonomia. Clinical manifestations and the outcome of acute attacks were used as a basis for developing a 30-score scale of the severity of an acute attack. This scale can easily be used in clinical practice and to standardise the outcome of an attack. Degree of muscle weakness scored by MRC, prolonged mechanical ventilation, bulbar paralysis, impairment of consciousness and hyponatraemia were important signs of a poor prognosis. Arrhythmia was less important and autonomic dysfunction, severity of pain and mental symptoms did not affect the outcome. The delay in the diagnosis and repeated administrations of precipitating factors were the main cause of proceeding of an acute attack into pareses and severe CNS involvement and a fatal outcome in two patients. Nerve conduction studies and needle EMG were performed in eleven AIP patients during an acute attack and/or in remission. Nine patients had severe PNP and two patients had an acute encephalopathy but no clinically evident PNP. In addition to axonopathy, features suggestive of demyelination could be demonstrated in patients with severe PNP during an acute attack. PNP with a moderate muscle weakness was mainly pure axonal. Sensory involvement was common in acute PNP and could be subclinical. Decreased conduction velocities with normal amplitudes of evoked potentials during acute attacks with no clinically evident PNP indicated subclinical polyneuropathy. Reversible symmetrical lesions comparable with posterior reversible encephalopathy syndrome (PRES) were revealed in two patients' brain CT or MRI during an acute attack. In other five patients brain MRI during or soon after the symptoms was normal. The frequency of reversible brain oedema in AIP is probably under-estimated since it may be short-lasting and often indistinguishable on CT or MRI. In the present study, nine different mutations were identified in the HMBS gene in 11 unrelated Russian AIP patients from North Western Russia and their 32 relatives. AIP was diagnosed in nine symptom-free relatives. The majority of the mutations were family-specific and confirmed allelic heterogeneity also among Russian AIP patients. Three mutations, c.825+5G>C, c.825+3_825+6del and c.770T>C, were novel. Six mutations, c.77G>A (p.R26H), c.517C>T (p.R173W), c.583C>T (p.R195C), c.673C>T (p.R225X), c.739T>C (p.C247R) and c.748G>C (p.E250A), have previously been identified in AIP patients from Western and other Eastern European populations. The effects of novel mutations were studied by amplification and sequencing of the reverse-transcribed total RNA obtained from the patients' lymphoblastoid or fibroblast cell lines. The mutations c.825+5G>C and c.770T>C resulted in varyable amounts of abnormal transcripts, r.822_825del (p.C275fsX2) and [r.770u>c, r.652_771del, r.613_771del (p.L257P, p.G218_L257del, p.I205_L257del)]. All mutations demonstrated low residual activities (0.1-1.3 %) when expressed in COS-1 cells confirming the causality of the mutations and the enzymatic defect of the disease. The clinical outcome, prognosis and correlation between the HMBS genotype and phenotype were studied in 143 Finnish and Russian AIP patients with ten mutations (c.33G>T, c.97delA, InsAlu333, p.R149X, p.R167W, p.R173W, p.R173Q, p.R225G, p.R225X, c.1073delA) and more than six patients in each group. The patients were selected from the pool of 287 Finnish AIP patients presented in a Finnish Porphyria Register (1966-2003) and 23 Russian AIP patients (diagnosed 1995-2003). Patients with the p.R167W and p.R225G mutations showed lower penetrance (19% and 11%) and the recurrence rate (33% and 0%) in comparison to the patients with other mutations (range 36 to 67% and 0 to 66%, respectively), as well as milder biochemical abnormalities [urinary porphobilinogen 47±10 vs. 163±21 mol/L, p<0.001; uroporphyrin 130±40 vs. 942±183 nmol/L, p<0.001] suggesting a milder form of AIP in these patients. Erythrocyte HMBS activity did not correlate with the porphobilinogen excretion in remission or the clinical of the disease. In all AIP severity patients, normal PBG excretion predicted freedom from acute attacks. Urinary PBG excretion together with gender, age at the time of diagnosis and mutation type could predict the likelihood of acute attacks in AIP patients.
Resumo:
Background: Aims of the study were: (i) to characterise the clinical picture, immunological features and changes in brain morphology and function in patients with widespread unilateral pain and HSV-infections, and (ii) to analyse the prevalence, clinical symptoms and immunological predisposing factors of HSV-2 induced recurrent lymphocytic meningitis (RLM) in Southern Finland. Patients and methods: Patients for the studies were recruited from the Pain Clinic, and from the Department of Neurology, at Helsinki University Central Hospital. Plasma concentrations of IgM, IgA, IgG, and IgG1-4, and serum concentrations of C3, C4 were measured. Serological anti-HSV-1 and -2 antibody status was tested. C4 genotyping, HLA-A, HLA-B and HLA-DRB1 typing, MBL2 genotyping, and IgG1 and IgG3 allotyping (Gm) were performed. Clinical neurological examination, quantitative sensory testing, skin biopsy, and functional magnetic resonance imaging were also performed. Results: HSV probably has a role in the generation of a pathological pain state. Low serum IgG1 and IgG3 levels, made the patients vulnerable for recurring HSV infections. Both functional and structural changes were observed in the brain pain-processing areas in the patients: they had less pain-related activity in the insular cortices bilaterally, in the anterior cingular cortex (ACC), and in the thalamus, and the gray matter density was lower in the ACC, in the frontal and prefrontal cortices. In the meningitis studies it was shown that RLM is more common and less benign than previously reported, and that neuropathic pain is frequently present both during and after meningitis episodes. HLA-DRB1*01, HLA-B*27, and low IgG1 levels are predisposing factors for RLM. Conclusions: Patients are vulnerable to recurrent HSV infections because of subtle immunological abnormalities. HSV causes diverse clinical manifestations. First, the herpes simplex virus, or the inflammatory process triggered by it, may cause pathological widespread pain probably by activating glial cells in the CNS. In these patients, signs of alterations in the brain pain-processing areas can be demonstrated by functional brain imaging methods. Secondly, HSV-2 induced RLM is a rare complication of HSV-2 virus. The predisposing factors include low IgG1 subclass levels, HLA-DRB1*01 and HLA –B*27 genotypes. Neuropathic pain is frequently associated with RLM.
Resumo:
Carotid atherosclerotic disease is a major cause of stroke, but it may remain clinically asymptomatic. The factors that turn the asymptomatic plaque into a symptomatic one are not fully understood, neither are the subtle effects that a high-grade carotid stenosis may have on the brain. The purpose of this study was to evaluate brain microcirculation, diffusion, and cognitive performance in patients with a high-grade stenosis in carotid artery, clinically either symptomatic or asymptomatic, undergoing carotid endarterectomy (CEA). We wanted to find out whether the stenoses are associated with diffusion or perfusion abnormalities of the brain or variation in the cognitive functioning of the patients, and to what extent the potential findings are affected by CEA, and compare the clinically symptomatic and asymptomatic subjects as well as strictly healthy controls. Coagulation and fibrinolytic parameters were compared with the rate microembolic signals (MES) in transcranial Doppler (TCD) and the macroscopic appearance of stenosing plaques in surgery. Patients (n=92) underwent CEA within the study. Blood samples pertaining to coagulation and fibrinolysis were collected before CEA, and the subjects underwent repeated TCD monitoring for MES. A subpopulation (n= 46) underwent MR imaging and repeated neuropsychological examination (preoperative, as well 4 and 100 days after CEA). In MRI, the average apparent diffusion coefficients were higher in the ipsilateral white matter (WM), and altough the interhemispheric difference was abolished by CEA, the levels remained higher than in controls. Symptomatic stenoses were associated with more sluggish perfusion especially in WM, and lower pulsatility of flow in TCD. All patients had poorer cognitive performance than healthy controls. Cognitive functions improved as expected by learning effect despite transient postoperative worsening in a few subjects. Improvement was greater in patients with deepest hypoperfusion, primarily in executive functions. Symptomatic stenoses were associated with higher hematocrit and tissue plasminogen activator antigen levels, as well as higher rate of MES and ulcerated plaques, and better postoperative improvement of vasoreactivity and pulsatility. In light of the findings, carotid stenosis is associated with differences in brain diffusion, perfusion, and cognition. The effect on diffusion in the ipsilateral WM, partially reversible by CEA, may be associated with WM degeneration. Asymptomatic and symptomatic subpopulations differ from each other in terms of hemodynamic adaptation and in their vascular physiological response to removal of stenosis. Although CEA may be associated with a transient cognitive decline, a true improvement of cognitive performance by CEA is possible in patients with the most pronounced perfusion deficits. Mediators of fibrinolysis and unfavourable hemorheology may contribute to the development of a symptomatic disease in patients with a high-grade stenosis.
Resumo:
The project consisted of two long-term follow-up studies of preterm children addressing the question whether intrauterine growth restriction affects the outcome. Assessment at 5 years of age of 203 children with a birth weight less than 1000 g born in Finland in 1996-1997 showed that 9% of the children had cognitive impairment, 14% cerebral palsy, and 4% needed a hearing aid. The intelligence quotient was lower (p<0.05) than the reference value. Thus, 20% exhibited major, 19% minor disabilities, and 61% had no functional abnormalities. Being small for gestational age (SGA) was associated with sub-optimal growth later. In children born before 27 gestational weeks, the SGA had more neuropsychological disabilities than those appropriate for gestational age (AGA). In another cohort with birth weight less than 1500 g assessed at 5 years of age, echocardiography showed a thickened interventricular septum and a decreased left ventricular end-diastolic diameter in both SGA and AGA born children. They also had a higher systolic blood pressure than the reference. Laser-Doppler flowmetry showed different endothelium-dependent and -independent vasodilation responses in the AGA children compared to those of the controls. SGA was not associated with cardio-vascular abnormalities. Auditory event-related potentials (AERPs) were recorded using an oddball paradigm with frequency deviants (standard tone 500 Hz and deviant 750-Hz with 10% probability). At term, the P350 was smaller in SGA and AGA infants than in controls. At 12 months, the automatic change detection peak (mismatch negativity, MMN) was observed in the controls. However, the pre-term infants had a difference positivity that correlated with their neurodevelopment scores. At 5 years of age, the P1-deflection, which reflects primary auditory processing, was smaller, and the MMN larger in the preterm than in the control children. Even with a challenging paradigm or a distraction paradigm, P1 was smaller in the preterm than in the control children. The SGA and AGA children showed similar AERP responses. Prematurity is a major risk factor for abnormal brain development. Preterm children showed signs of cardiovascular abnormality suggesting that prematurity per se may carry a risk for later morbidity. The small positive amplitudes in AERPs suggest persisting altered auditory processing in the preterm in-fants.
Resumo:
Conventional invasive coronary angiography is the clinical gold standard for detecting of coronary artery stenoses. Noninvasive multidetector computed tomography (MDCT) in combination with retrospective ECG gating has recently been shown to permit visualization of the coronary artery lumen and detection of coronary artery stenoses. Single photon emission tomography (SPECT) perfusion imaging has been considered the reference method for evaluation of nonviable myocardium, but magnetic resonance imaging (MRI) can accurately depict structure, function, effusion, and myocardial viability, with an overall capacity unmatched by any other single imaging modality. Magnetocardiography (MCG) provides noninvasively information about myocardial excitation propagation and repolarization without the use of electrodes. This evolving technique may be considered the magnetic equivalent to electrocardiography. The aim of the present series of studies was to evaluate changes in the myocardium assessed with SPECT and MRI caused by coronary artery disease, examine the capability of multidetector computed tomography coronary angiography (MDCT-CA) to detect significant stenoses in the coronary arteries, and MCG to assess remote myocardial infarctions. Our study showed that in severe, progressing coronary artery disease laser treatment does not improve global left ventricular function or myocardial perfusion, but it does preserve systolic wall thickening in fixed defects (scar). It also prevents changes from ischemic myocardial regions to scar. The MCG repolarization variables are informative in remote myocardial infarction, and may perform as well as the conventional QRS criteria in detection of healed myocardial infarction. These STT abnormalities are more pronounced in patients with Q-wave infarction than in patients with non-Q-wave infarctions. MDCT-CA had a sensitivity of 82%, a specificity of 94%, a positive predictive value of 79%, and a negative predictive value of 95% for stenoses over 50% in the main coronary arteries as compared with conventional coronary angiography in patients with known coronary artery disease. Left ventricular wall dysfunction, perfusion defects, and infarctions were detected in 50-78% of sectors assigned to calcifications or stenoses, but also in sectors supplied by normally perfused coronary arteries. Our study showed a low sensitivity (sensitivity 63%) in detecting obstructive coronary artery disease assessed by MDCT in patients with severe aortic stenosis. Massive calcifications complicated correct assessment of the lumen of coronary arteries.
Resumo:
Cavernomas are rare neurovascular lesions, encountered in up to 10% of patients harboring vascular abnormalities of the CNS. Cavernomas consist of dilated thin-walled sinusoids or caverns covered by a single layer of endothelium. Due to advancements in neuroradiology, the number of cavernoma patients coming to be evaluated in neurosurgical practice is increasing. In the present work, we summarized our results on the treatment of cavernomas. Particular attention was paid to uncommon locations or insufficiently investigated cavernomas, including 1. Intraventricular cavernomas; 2. Multiple cavernomas; 3. Spinal cavernomas; and 4. Temporal lobe cavernomas. After analyzing the patient series with these lesions, we concluded that: 1. IVCs are characterized by a high tendency to cause repetitive hemorrhages in a short period of time after the first event. In most patients, hemorrhages were not life-threatening. Surgery is indicated when re-bleedings are frequent and the mass-effect causes progressive neurological deterioration. Modern microsurgical techniques allow safe removal of the IVC, but surgery on fourth ventricle cavernomas carries increased risk of postoperative cranial nerve deficits. 2. In MC cases, when the cavernoma bleeds or generates drug-resistant epilepsy, microsurgical removal of the symptomatic lesion is beneficial to patients. In our series, surgical removal of the most active cavernoma usually the biggest lesion with signs of recent hemorrhage - was safe and prevented further bleedings. Epilepsy outcome showed the effectiveness of active treatment of MCs. However, due to the remaining cavernomas, epileptogenic activity can persist postoperatively, frequently necessitating long-term use of antiepileptic drugs. 3. Spinal cavernomas can cause severe neurological deterioration due to low tolerance of the spinal cord to mass-effect with progressive myelopathy. When aggravated by extralesional massive hemorrhage, neurological decline is usually acute and requires immediate treatment. Microsurgical removal of a cavernoma is effective and safe, improving neurological deficits. Sensorimotor deficits and pain improved postoperatively at a high rate, whereas bladder dysfunction remained essentially unchanged, causing social discomfort to patients. 4. Microsurgical removal of temporal lobe cavernomas is beneficial for patents suffering from drug-resistant epilepsy. In our series, 69% of patients with this condition became seizure-free postoperatively. Duration of epilepsy did not correlate with seizure prognosis. The most frequent disabling symptom at follow-up was memory disorder, considered to be the result of a complex interplay between chronic epilepsy and possible damage to the temporal lobe during surgery.
Resumo:
Congenital long QT syndrome (LQTS) with an estimated prevalence of 1:2000-1:10 000 manifests with prolonged QT interval on electrocardiogram and risk for ventricular arrhythmias and sudden death. Several ion channel genes and hundreds of mutations in these genes have been identified to underlie the disorder. In Finland, four LQTS founder mutations of potassium channel genes account for up to 40-70% of genetic spectrum of LQTS. Acquired LQTS has similar clinical manifestations, but often arises from usage of QT-prolonging medication or electrolyte disturbances. A prolonged QT interval is associated with increased morbidity and mortality not only in clinical LQTS but also in patients with ischemic heart disease and in the general population. The principal aim of this study was to estimate the actual prevalence of LQTS founder mutations in Finland and to calculate their effect on QT interval in the Finnish background population. Using a large population-based sample of over 6000 Finnish individuals from the Health 2000 Survey, we identified LQTS founder mutations KCNQ1 G589D (n=8), KCNQ1 IVS7-2A>G (n=1), KCNH2 L552S (n=2), and KCNH2 R176W (n=16) in 27 study participants. This resulted in a weighted prevalence estimate of 0.4% for LQTS in Finland. Using a linear regression model, the founder mutations resulted in a 22- to 50-ms prolongation of the age-, sex-, and heart rate-adjusted QT interval. Collectively, these data suggest that one of 250 individuals in Finland may be genetically predisposed to ventricular arrhythmias arising from the four LQTS founder mutations. A KCNE1 D85N minor allele with a frequency of 1.4% was associated with a 10-ms prolongation in adjusted QT interval and could thus identify individuals at increased risk of ventricular arrhythmias at the population level. In addition, the previously reported associations of KCNH2 K897T, KCNH2 rs3807375, and NOS1AP rs2880058 with QT interval duration were confirmed in the present study. In a separate study, LQTS founder mutations were identified in a subgroup of acquired LQTS, providing further evidence that congenital LQTS gene mutations may underlie acquired LQTS. Catecholaminergic polymorphic ventricular tachycardia (CPVT) is characterized by exercise-induced ventricular arrhythmias in a structurally normal heart and results from defects in the cardiac Ca2+ signaling proteins, mainly ryanodine receptor type 2 (RyR2). In a patient population of typical CPVT, RyR2 mutations were identifiable in 25% (4/16) of patients, implying that noncoding variants or other genes are involved in CPVT pathogenesis. A 1.1 kb RyR2 exon 3 deletion was identified in two patients independently, suggesting that this region may provide a new target for RyR2-related molecular genetic studies. Two novel RyR2 mutations showing a gain-of-function defect in vitro were identified in three victims of sudden cardiac death. Extended pedigree analyses revealed some surviving mutation carriers with mild structural abnormalities of the heart and resting ventricular arrhythmias suggesting that not all RyR2 mutations lead to a typical CPVT phenotype, underscoring the relevance of tailored risk stratification of a RyR2 mutation carrier.
Resumo:
A large number of human polyomaviruses have been discovered in the last 7 years. However, little is known about the clinical impact on vulnerable immunosuppressed patient populations. Blood, urine, and respiratory swabs collected from a prospective, longitudinal adult kidney transplant cohort (n = 167) generally pre-operatively, at day 4, months 1, 3, and 6 posttransplant, and at BK viremic episodes within the first year were screened for 12 human polyomaviruses using real-time polymerase chain reaction. Newly discovered polyomaviruses were most commonly detected in the respiratory tract, with persistent shedding seen for up to 6 months posttransplant. Merkel cell polyomavirus was the most common detection, but was not associated with clinical symptoms or subsequent development of skin cancer or other skin abnormalities. In contrast, KI polyomavirus was associated with respiratory disease in a subset of patients. Human polyomavirus 9, Malawi polyomavirus, and human polyomavirus 12 were not detected in any patient samples.
Resumo:
Lipid analysis is commonly performed by gas chromatography (GC) in laboratory conditions. Spectroscopic techniques, however, are non-destructive and can be implemented noninvasively in vivo. Excess fat (triglycerides) in visceral adipose tissue and liver is known predispose to metabolic abnormalities, collectively known as the metabolic syndrome. Insulin resistance is the likely cause with diets high in saturated fat known to impair insulin sensitivity. Tissue triglyceride composition has been used as marker of dietary intake but it can also be influenced by tissue specific handling of fatty acids. Recent studies have shown that adipocyte insulin sensitivity correlates positively with their saturated fat content, contradicting the common view of dietary effects. A better understanding of factors affecting tissue triglyceride composition is needed to provide further insights into tissue function in lipid metabolism. In this thesis two spectroscopic techniques were developed for in vitro and in vivo analysis of tissue triglyceride composition. In vitro studies (Study I) used infrared spectroscopy (FTIR), a fast and cost effective analytical technique well suited for multivariate analysis. Infrared spectra are characterized by peak overlap leading to poorly resolved absorbances and limited analytical performance. In vivo studies (Studies II, III and IV) used proton magnetic resonance spectroscopy (1H-MRS), an established non-invasive clinical method for measuring metabolites in vivo. 1H-MRS has been limited in its ability to analyze triglyceride composition due to poorly resolved resonances. Using an attenuated total reflection accessory, we were able to obtain pure triglyceride infrared spectra from adipose tissue biopsies. Using multivariate curve resolution (MCR), we were able to resolve the overlapping double bond absorbances of monounsaturated fat and polyunsaturated fat. MCR also resolved the isolated trans double bond and conjugated linoleic acids from an overlapping background absorbance. Using oil phantoms to study the effects of different fatty acid compositions on the echo time behaviour of triglycerides, it was concluded that the use of long echo times improved peak separation with T2 weighting having a negligible impact. It was also discovered that the echo time behaviour of the methyl resonance of omega-3 fats differed from other fats due to characteristic J-coupling. This novel insight could be used to detect omega-3 fats in human adipose tissue in vivo at very long echo times (TE = 470 and 540 ms). A comparison of 1H-MRS of adipose tissue in vivo and GC of adipose tissue biopsies in humans showed that long TE spectra resulted in improved peak fitting and better correlations with GC data. The study also showed that calculation of fatty acid fractions from 1H-MRS data is unreliable and should not be used. Omega-3 fatty acid content derived from long TE in vivo spectra (TE = 540 ms) correlated with total omega-3 fatty acid concentration measured by GC. The long TE protocol used for adipose tissue studies was subsequently extended to the analysis of liver fat composition. Respiratory triggering and long TE resulted in spectra with the olefinic and tissue water resonances resolved. Conversion of the derived unsaturation to double bond content per fatty acid showed that the results were in accordance with previously published gas chromatography data on liver fat composition. In patients with metabolic syndrome, liver fat was found to be more saturated than subcutaneous or visceral adipose tissue. The higher saturation observed in liver fat may be a result of a higher rate of de-novo-lipogenesis in liver than in adipose tissue. This thesis has introduced the first non-invasive method for determining adipose tissue omega-3 fatty acid content in humans in vivo. The methods introduced here have also shown that liver fat is more saturated than adipose tissue fat.
Resumo:
Background
How new forms arise in nature has engaged evolutionary biologists since Darwin's seminal treatise on the origin of species. Transposable elements (TEs) may be among the most important internal sources for intraspecific variability. Thus, we aimed to explore the temporal dynamics of several TEs in individual genotypes from a small, marginal population of Aegilops speltoides. A diploid cross-pollinated grass species, it is a wild relative of the various wheat species known for their large genome sizes contributed by an extraordinary number of TEs, particularly long terminal repeat (LTR) retrotransposons. The population is characterized by high heteromorphy and possesses a wide spectrum of chromosomal abnormalities including supernumerary chromosomes, heterozygosity for translocations, and variability in the chromosomal position or number of 45S and 5S ribosomal DNA (rDNA) sites. We propose that variability on the morphological and chromosomal levels may be linked to variability at the molecular level and particularly in TE proliferation.
Results
Significant temporal fluctuation in the copy number of TEs was detected when processes that take place in small, marginal populations were simulated. It is known that under critical external conditions, outcrossing plants very often transit to self-pollination. Thus, three morphologically different genotypes with chromosomal aberrations were taken from a wild population of Ae. speltoides, and the dynamics of the TE complex traced through three rounds of selfing. It was discovered that: (i) various families of TEs vary tremendously in copy number between individuals from the same population and the selfed progenies; (ii) the fluctuations in copy number are TE-family specific; (iii) there is a great difference in TE copy number expansion or contraction between gametophytes and sporophytes; and (iv) a small percentage of TEs that increase in copy number can actually insert at novel locations and could serve as a bona fide mutagen.
Conclusions
We hypothesize that TE dynamics could promote or intensify morphological and karyotypical changes, some of which may be potentially important for the process of microevolution, and allow species with plastic genomes to survive as new forms or even species in times of rapid climatic change.
Resumo:
Normal growth and development require the precise control of gene expression. Transcription factors are proteins that regulate gene expression by binding specific sequences of DNA. Abnormalities in transcription are implicated in a variety of human diseases, including cancer, endocrine disorders and birth defects. Transcription factor GATA4 has emerged as an important regulator of normal development and function in a variety of endoderm- and mesoderm- derived tissues, including gut, heart and several endocrine organs, such as gonads. Mice harboring a null mutation of Gata4 gene die during embryogenesis due to failure in heart formation, complicating the study of functional role of GATA4 in other organs. However, the expression pattern of GATA4 suggests it may play a role in the regulation of ovarian granulosa cell development, function and apoptosis. This premise is supported by in vitro studies showing that GATA4 regulates several steroidogenic enzymes as well as auto-, para- and endocrine signaling molecules important for granulosa cell function. This study assessed the in vivo role of GATA4 for granulosa cell function by utilizing two genetically modified mouse strains. The findings in the GATA4 deficient mice included delayed puberty, impaired fertility and signs of diminished estrogen production. At the molecular level, the GATA4 deficiency leads to attenuated expression of central steroidogenic genes, Steroidogenic acute regulatory protein (StAR), Side-chain cleavage (SCC), and aromatase as a response to stimulations with exogenous gonadotropins. Taken together, these suggest GATA4 is necessary for the normal ovarian function and female fertility. Programmed cell death, apoptosis, is a crucial part of normal ovarian development and function. In addition, disturbances in apoptosis have been implicated to pathogenesis of human granulosa cell tumors (GCTs). Apoptosis is controlled by extrinsic and intrinsic pathways. The intrinsic pathway is regulated by members of Bcl-2 family, and its founding member, the anti-apoptotic Bcl-2, is known to be important for granulosa cell survival. This study showed that the expression levels of GATA4 and Bcl-2 correlate in the human GCTs and that GATA4 regulates Bcl-2 expression, presumably by directly binding to its promoter. In addition, disturbing GATA4 function was sufficient to induce apoptosis in cultured GCT- derived cell line. Taken together, these results suggest GATA4 functions as an anti-apoptotic factor in GCTs. The extrinsic apoptotic pathway is controlled by the members of tumor necrosis factor (TNF) superfamily. An interesting ligand of this family is TNF-related apoptosis-inducing ligand (TRAIL), possessing a unique ability to selectively induce apoptosis in malignant cells. This study characterized the previously unknown expression of TRAIL and its receptors in both developing and adult human ovary, as well as in malignant granulosa cell tumors. TRAIL pathway was shown to be active in GCTs suggesting it may be a useful tool in treating these malignancies. However, more studies are required to assess the function of TRAIL pathway in normal ovaries. In addition to its ability to induce apoptosis in GCTs, this study revealed that GATA4 protects these malignancies from TRAIL-induced apoptosis. GATA4 presumably exerts this effect by regulating the expression of anti-apoptotic Bcl-2. This is of particular interest as high expression of GATA4 is known to correlate to aggressive GCT behavior. Thus, GATA4 seems to protect GCTs from endogenous TRAIL by upregulating anti-apoptotic factors such as Bcl-2.
Resumo:
Myotonic dystrophies type 1 (DM1) and type 2 (DM2) are the most common forms of muscular dystrophy affecting adults. They are autosomal dominant diseases caused by microsatellite tri- or tetranucleotide repeat expansion mutations in transcribed but not translated gene regions. The mutant RNA accumulates in nuclei disturbing the expression of several genes. The more recently identified DM2 disease is less well known, yet more than 300 patients have been confirmed in Finland thus far, and the true number is believed to be much higher. DM1 and DM2 share some features in general clinical presentation and molecular pathology, yet they show distinctive differences, including disease severity and differential muscle and fiber type involvement. However, the molecular differences underlying DM1 and DM2 muscle pathology are not well understood. Although the primary tissue affected is muscle, both DMs show a multisystemic phenotype due to wide expression of the mutation-carrying genes. DM2 is particularly intriguing, as it shows an incredibly wide spectrum of clinical manifestations. For this reason, it constitutes a real diagnostic challenge. The core symptoms in DM2 include proximal muscle weakness, muscle pain, myotonia, cataracts, cardiac conduction defects and endocrinological disturbations; however, none of these is mandatory for the disease. Myalgic pains may be the most disabling symptom for decades, sometimes leading to incapacity for work. In addition, DM2 may cause major socio-economical consequences for the patient, if not diagnosed, due to misunderstanding and false stigmatization. In this thesis work, we have (I) improved DM2 differential diagnostics based on muscle biopsy, and (II) described abnormalities in mRNA and protein expression in DM1 and DM2 patient skeletal muscles, showing partial differences between the two diseases, which may contribute to muscle pathology in these diseases. This is the first description of histopathological differences between DM1 and DM2, which can be used in differential diagnostics. Two novel high-resolution applications of in situ -hybridization have been described, which can be used for direct visualization of the DM2 mutation in muscle biopsy sections, or mutation size determination on extended DNA-fibers. By measuring protein and mRNA expression in the samples, differential changes in expression patterns affecting contractile proteins, other structural proteins and calcium handling proteins in DM2 compared to DM1 were found. The dysregulation at mRNA level was caused by altered transciption and abnormal splicing. The findings reported here indicate that the extent of aberrant splicing is higher in DM2 compared to DM1. In addition, the described abnormalities to some extent correlate to the differences in fiber type involvement in the two disorders.
Resumo:
This study identified the molecular defects underlying three lethal fetal syndromes. Lethal Congenital Contracture Syndrome 1 (LCCS1, MIM 253310) and Lethal Arthrogryposis with Anterior Horn Cell Disease (LAAHD, MIM 611890) are fetal motor neuron diseases. They affect the nerve cells that control voluntary muscle movement, and eventually result in severe atrophy of spinal cord motor neurons and fetal immobility. Both LCCS1 and LAAHD are caused by mutations in the GLE1 gene, which encodes for a multifunctional protein involved in posttranscriptional mRNA processing. LCCS2 and LCCS3, two syndromes that are clinically similar to LCCS1, are caused by defective proteins involved in the synthesis of inositol hexakisphosphate (IP6), an essential cofactor of GLE1. This suggests a common mechanism behind these fetal motor neuron diseases, and along with accumulating evidence from genetic studies of more late-onset motor neuron diseases such as Spinal muscular atrophy (SMA) and Amyotrophic lateral sclerosis (ALS), implicates mRNA processing as a common mechanism in motor neuron disease pathogenesis. We also studied gle1-/- zebrafish in order to investigate whether they would be a good model for studying the pathogenesis of LCCS1 and LAAHD. Mutant zebrafish exhibit cell death in their central nervous system at two days post fertilization, and the distribution of mRNA within the cells of mutant zebrafish differs from controls, encouraging further studies. The third lethal fetal syndrome is described in this study for the first time. Cocoon syndrome (MIM 613630) was discovered in a Finnish family with two affected individuals. Its hallmarks are the encasement of the limbs under the skin, and severe craniofacial abnormalities, including the lack of skull bones. We showed that Cocoon syndrome is caused by a mutation in the gene encoding the conserved helix-loop-helix ubiquitous kinase CHUK, also known as IκB kinase α (IKKα). The mutation results in the complete lack of CHUK protein expression. CHUK is a subunit of the IκB kinase enzyme that inhibits NF-κB transcription factors, but in addition, it has an essential, independent role in controlling keratinocyte differentiation, as well as informing morphogenetic events such as limb and skeletal patterning. CHUK also acts as a tumor suppressor, and is frequently inactivated in cancer. This study has brought significant new information about the molecular background of these three lethal fetal syndromes, as well as provided knowledge about the prerequisites of normal human development.
Resumo:
Electric activity of the heart consists of repeated cardiomyocyte depolarizations and repolarizations. Abnormalities in repolarization predispose to ventricular arrhythmias. In body surface electrocardiogram, ventricular repolarization generates the T wave. Several electrocardiographic measures have been developed both for clinical and research purposes to detect repolarization abnormalities. The study aim was to investigate modifiers of ventricular repolarization with the focus on the relationship of the left ventricular mass, antihypertensive drugs, and common gene variants, to electrocardiographic repolarization parameters. The prognostic value of repolarization parameters was also assessed. The study subjects originated from a population of more than 200 middle-aged hypertensive men attending the GENRES hypertension study, and from an epidemiological survey, the Health 2000 Study, including more than 6000 participants. Ventricular repolarization was analysed from digital standard 12-lead resting electrocardiograms with two QT-interval based repolarization parameters (QT interval, T-wave peak to T-wave end interval) and with a set of four T-wave morphology parameters. The results showed that in hypertensive men, a linear change in repolarization parameters is present even in the normal range of left ventricular mass, and that even mild left ventricular hypertrophy is associated with potentially adverse electrocardiographic repolarization changes. In addition, treatments with losartan, bisoprolol, amlodipine, and hydrochlorothiazide have divergent short-term effects on repolarization parameters in hypertensive men. Analyses of the general population sample showed that single nucleotide polymorphisms in KCNH2, KCNE1, and NOS1AP genes are associated with changes in QT-interval based repolarization parameters but not consistently with T-wave morphology parameters. T-wave morphology parameters, but not QT interval or T-wave peak to T-wave end interval, provided independent prognostic information on mortality. The prognostic value was specifically related to cardiovascular mortality. The results indicate that, in hypertension, altered ventricular repolarization is already present in mild left ventricular mass increase, and that commonly used antihypertensive drugs may relatively rapidly and treatment-specifically modify electrocardiographic repolarization parameters. Common variants in cardiac ion channel genes and NOS1AP gene may also modify repolarization-related arrhythmia vulnerability. In the general population, T-wave morphology parameters may be useful in the risk assessment of cardiovascular mortality.
Resumo:
Cancer cells are often associated with secondary chromosomal rearrangements, such as deletions, inversions, and translocations, which could be the consequence of unrepaired/misrepaired DNA double strand breaks (DSBs). Nonhomologous DNA end joining is one of the most common pathways to repair DSBs in higher eukaryotes. By using oligomeric DNA substrates mimicking various endogenous DSBs in a cell-free system, we studied end joining (EJ) in different cancer cell lines. We found that the efficiency of EJ varies among cancer cells; however, there was no remarkable difference in the mechanism and expression of EJ proteins. Interestingly, cancer cells with lower levels of EJ possessed elevated expression of BCL2 and vice versa. Removal of BCL2 by immunoprecipitation or protein fractionation led to elevated EJ. More importantly, we show that overexpression of BCL2 or the addition of purified BCL2 led to the down-regulation of EJ. Further, we found that BCL2 interacts with KU proteins both in vitro and in vivo. Hence, our results suggest that EJ in cancer cells could be negatively regulated by the anti-apoptotic protein, BCL2, and this may contribute toward increased chromosomal abnormalities in cancer.