637 resultados para Aberración intraocular
Resumo:
Due to its small size and particular isolating barriers, the eye is an ideal target for local therapy. Recombinant protein ocular delivery requires invasive and painful repeated injections. Alternatively, a transfected tissue might be used as a local producer of transgene-encoded therapeutic protein. We have developed a nondamaging electrically mediated plasmid delivery technique (electrotransfer) targeted to the ciliary muscle, which is used as a reservoir tissue for the long-lasting expression and secretion of therapeutic proteins. High and long-lasting reporter gene expression was observed, which was restricted to the ciliary muscle. Chimeric TNF-alpha soluble receptor (hTNFR-Is) electrotransfer led to elevated protein secretion in aqueous humor and to drastic inhibition of clinical and histological inflammation scores in rats with endotoxin-induced uveitis. No hTNFR-Is was detected in the serum, demonstrating the local delivery of proteins using this method. Plasmid electrotransfer to the ciliary muscle, as performed in this study, did not induce any ocular pathology or structural damage. Local and sustained therapeutic protein production through ciliary muscle electrotransfer is a promising alternative to repeated intraocular protein administration for a large number of inflammatory, degenerative, or angiogenic diseases.
Resumo:
The major problems associated with the use of corticosteroids for the treatment of ocular diseases are their poor intraocular penetration to the posterior segment when administered locally and their secondary side effects when given systemically. To circumvent these problems more efficient methods and techniques of local delivery are being developed. The purposes of this study were: (1) to investigate the pharmacokinetics of intraocular penetration of hemisuccinate methyl prednisolone (HMP) after its delivery using the transscleral Coulomb controlled iontophoresis (CCI) system applied to the eye or after intravenous (i.v.) injection in the rabbit, (2) to test the safety of the CCI system for the treated eyes and (3) to compare the pharmacokinetic profiles of HMP intraocular distribution after CCI delivery to i.v. injection. For each parameter evaluated, six rabbit eyes were used. For the CCI system, two concentrations of HMP (62.5 and 150mg ml(-1)), various intensities of current and duration of treatment were analyzed. In rabbits serving as controls the HMP was infused in the CCI device but without applied electric current. For the i.v. delivery, HMP at 10mg kg(-1)as a 62.5mg ml(-1)solution was used. The rabbits were observed clinically for evidence of ocular toxicity. At various time points after the administration of drug, rabbits were killed and intraocular fluids and tissues were sampled for methylprednisolone (MP) concentrations by high pressure liquid chromatography (HPLC). Histology examinations were performed on six eyes of each group. Among groups that received CCI, the concentrations of MP increased in all ocular tissues and fluids in relation to the intensities of current used (0.4, 1.0 and 2.0mA/0.5cm(2)) and its duration (4 and 10min). Sustained and highest levels of MP were achieved in the choroid and the retina of rabbit eyes treated with the highest current and 10min duration of CCI. No clinical toxicity or histological lesions were observed following CCI. Negligible amounts of MP were found in ocular tissues in the CCI control group without application of current. Compared to i.v. administration, CCI achieved higher and more sustained tissue concentrations with negligible systemic absorption. These data demonstrate that high levels of MP can be safely achieved in intraocular tissues and fluids of the rabbit eye, using CCI. With this system, intraocular tissues levels of MP are higher than those achieved after i.v. injection. Furthermore, if needed, the drug levels achieved with CCI can be modulated as a function of current intensity and duration of treatment. CCI could therefore be used as an alternative method for the delivery of high levels of MP to the intraocular tissues of both the anterior and posterior segments.
Resumo:
This study aimed to assess application of ultrasound (US) combined with microbubbles (MB) to transfect the ciliary muscle of rat eyes. Reporter DNA plasmids encoding for Gaussia luciferase, β-galactosidase or the green fluorescent protein (GFP), alone or mixed with 50% Artison MB, were injected into the ciliary muscle, with or without US exposure (US set at 1 MHz, 2 W/cm(2), 50% duty cycle for 2 min). Luciferase activity was measured in ocular fluids at 7 and 30 days after sonoporation. At 1 week, the US+MB treatment showed a significant increase in luminescence compared with control eyes, injected with plasmid only, with or without MB (×2.6), and, reporter proteins were localized in the ciliary muscle by histochemical analysis. At 1 month, a significant decrease in luciferase activity was observed in all groups. A rise in lens and ciliary muscle temperature was measured during the procedure but did not result in any observable or microscopic damages at 1 and 8 days. The feasibility to transfer gene into the ciliary muscle by US and MB suggests that sonoporation may allow intraocular production of proteins for the treatment of inflammatory, angiogenic and/or degenerative retinal diseases.
Resumo:
PURPOSE: To describe the use of anterior segment optical coherence tomography (AS-OCT) to clarify the position and patency of aqueous shunt devices in the anterior chamber of eyes where corneal edema or tube position does not permit a satisfactory view. DESIGN: Noncomparative observational case series. METHODS: Four cases are reported in which aqueous shunt malposition or obstruction was suspected but the shunt could not be seen on clinical examination. The patients underwent AS-OCT to identify the position and patency of the shunt tip. RESULTS: In each case, AS-OCT provided data regarding tube position and/or patency that could not be obtained by slit-lamp examination or by gonioscopy that influenced management. CONCLUSIONS: AS-OCT can be used to visualize anterior chamber tubes in the presence of corneal edema that precludes an adequate view or in cases where the tube is retracted into the cornea. In such cases, AS-OCT is useful in identifying shunt patency and position, which helps guide clinical decision making.
Resumo:
Diabetic retinopathy is associated with ocular inflammation, leading to retinal barrier breakdown, macular edema, and visual cell loss. We investigated the molecular mechanisms involved in microglia/macrophages trafficking in the retina and the role of protein kinase Cζ (PKCζ) in this process. Goto Kakizaki (GK) rats, a model for spontaneous type 2 diabetes were studied until 12 months of hyperglycemia. Up to 5 months, sparse microglia/macrophages were detected in the subretinal space, together with numerous pores in retinal pigment epithelial (RPE) cells, allowing inflammatory cell traffic between the retina and choroid. Intercellular adhesion molecule-1 (ICAM-1), caveolin-1 (CAV-1), and PKCζ were identified at the pore border. At 12 months of hyperglycemia, the significant reduction of pores density in RPE cell layer was associated with microglia/macrophages accumulation in the subretinal space together with vacuolization of RPE cells and disorganization of photoreceptors outer segments. The intraocular injection of a PKCζ inhibitor at 12 months reduced iNOS expression in microglia/macrophages and inhibited their migration through the retina, preventing their subretinal accumulation. We show here that a physiological transcellular pathway takes place through RPE cells and contributes to microglia/macrophages retinal trafficking. Chronic hyperglycemia causes alteration of this pathway and subsequent subretinal accumulation of activated microglia/macrophages.
Resumo:
PURPOSE: To report neovascular glaucoma after proton-beam radiotherapy of an adenocarcinoma of the pigmented ciliary epithelium and its successful treatment by iridocyclectomy. PATIENT AND METHODS: A 65-year-old man developed neovascular glaucoma 10 months after proton-beam radiotherapy of a small pigmented iridociliary tumour with a clinical differential diagnosis of uveal melanoma or adenocarcinoma. The diagnosis of 'toxic tumour syndrome' was made, and iridocyclectomy performed. RESULTS: Histopathology and immunohistochemistry of the specimen diagnosed an adenocarcinoma of the pigmented ciliary epithelium, with the presence of mitoses suggesting residual viable tumour cells. The rubeosis regressed, with normalization of the intraocular pressure. Phacoemulsification for radiation-induced cataract restored VA to 6/9, which was better than that recorded at initial referral, the patient having longstanding cellophane maculopathy. CONCLUSIONS: Neovascular glaucoma after radiotherapy of a small, pigmented, ciliary body tumour raises the possibility of adenocarcinoma. This 'toxic tumour syndrome' may respond to iridocyclectomy of the irradiated tumour.
Resumo:
PURPOSE: To evaluate the antimitotic and toxic effects of 5-chlorouracil (5-CU) and 5-fluorouracil (5-FU) and study their potential to delay filtering bleb closure in the rabbit eye when released by poly(ortho esters) (POE). METHODS: Rabbit Tenon fibroblasts and human conjunctival cells were incubated with various 5-CU and 5-FU concentrations. Antiproliferative effects and toxicity were evaluated at 24 and 72 hours by monotetrazolium, neutral red, and Hoechst tests and cell counting. Mechanisms of cell death were evaluated using TUNEL assay, annexin V binding, immunohistochemistry for anti-apoptosis-inducing factor (AIF) and LEI/L-DNase II. Trabeculectomy was performed in pigmented rabbits. Two hundred microliters of POE loaded with 1% wt/wt 5-FU or 5-CU was injected into the subconjunctival space after surgery. Intraocular pressure (IOP) and bleb persistence were monitored for 150 days. RESULTS: In vitro, 5-FU showed a higher antiproliferative effect and a more toxic effect than 5-CU. 5-FU induced cell necrosis, whereas 5-CU induced mostly apoptosis. The apoptosis induced by 5-CU was driven through a non-caspase-dependent pathway involving AIF and LEI/L-DNase II. In vivo, at 34 days after surgery, the mean IOP in the POE/5-CU-treated group was 83% of the baseline level and only 40% in the POE/5-FU-treated group. At 100 days after surgery, IOP was still decreased in the POE/5-CU group when compared with the controls and still inferior to the preoperative value. The mean long-term IOP, with all time points considered, was significantly (P < 0.0001) decreased in the POE/5-CU-treated group (6.0 +/- 2.4 mm Hg) when compared with both control groups, the trabeculectomy alone group (7.6 +/- 2.9 mm Hg), and the POE alone group (7.5 +/- 2.6 mm Hg). Histologic analysis showed evidence of functioning blebs in the POE-5-CU-treated eyes along with a preserved structure of the conjunctiva epithelium. CONCLUSIONS: The slow release of 5-CU from POE has a longstanding effect on the decrease of IOP after glaucoma-filtering surgery in the rabbit eye. Thus, the slow release of POE/5-CU may be beneficial for the prevention of bleb closure in patients who undergo complicated trabeculectomy.
Resumo:
Background: To study the efficacy and safety of a new intravitreal implant (sustained release of dexamethasone, Ozurdex®) recently approved in Switzerland for the treatment of macular edema secondary to retinal vein occlusion in a clinical setting.Patients and Methods: Prospective non-consecutive study of patients with macular edema secondary to central retinal vein occlusion or branch retinal vein occlusion treated with implant of dexamethasone 0.7 mg. Follow-up visits were performed at day 1, week 1 and monthly thereafter. ETDRS best corrected visual acuity, Goldmann tonometry and macular thickness on SD-OCT were registered. Retreatment was carried out on a pro re nata basis starting from month 3.Results: Fifteen eyes of 15 patients were included (8 branch retinal vein occlusions, 7 central retinal vein occlusions). 33 % of the patients achieved 3 lines or more of vision gain. The central retinal vein occlusion subgroup showed a mean decline in visual acuity at month 3. A reduction of 36 % of macular edema was already observed at day 1. All maculae were dry at month 1. The mean time of recurrence of macular edema for both groups was 4.6 months. A similar reduction of macular edema was obtained after a second implantation. An intraocular pressure increase of ≥ 20 % was observed after the first implantation in 53 % of patients.Conclusion: Our study showed efficacy and safety of intravitreal dexamethasone implant in the treatment of macular edema due to retinal vein occlusion. Anatomical efficacy was observed at day 1 but seems to have shorter effect than previously published data. No serious side effects were observed.
Resumo:
PURPOSE: Almost five years have elapsed since the introduction of latanoprost on several markets and considering the large number of publications dealing with it, the authors felt that it was worth re-evaluating the drug. METHODS: The criterion used to select trials for inclusion in the review was: all articles mentioning the drug in common electronic data-bases; these were then screened and considered, on the basis of methodological quality. RESULTS: Experimental data suggest that latanoprost acts by remodeling the extracellular matrix in the ciliary muscle, thus increasing the flow of aqueous humor through the ciliary muscle bundles of the uveoscleral pathway. POAG: Latanoprost persistently improves the pulsatile ocular blood flow in primary open angle glaucoma (POAG). Recent trials confirmed the greater IOP-lowering efficacy of latanoprost vs. timolol, dorzolamide, brimonidine and unoprostone. Trials lasting up to 24 months showed that latanoprost is effective in long-term treatment of POAG and ocular hypertension (OH), with no signs of loss of efficacy when compared to timolol or dorzolamide. Latanoprost provides better control of circadian IOP. Non-responders to beta-blockers should preferably be switched to latanoprost monotherapy before a combination therapy is started. The possibility of a fixed combination of latanoprost and timolol has been explored, with promising results. NTG: Latanoprost is effective in normal tension glaucoma (NTG), lowering IOP, improving pulsatile ocular blood flow and increasing ocular perfusion pressure. OTHER GLAUCOMAS: Latanoprost may provide effective IOP control in angle-closure glaucoma after iridectomy, in pigmentary glaucoma, glaucoma after cataract extraction and steroid-induced glaucoma. However, latanoprost was effective in only a minority of pediatric cases of glaucoma and is contraindicated in all forms of uveitic glaucoma. SAFETY: In the articles reviewed, new or duration-related adverse events were reported.
Resumo:
PURPOSE: To evaluate the early effects of intravitreal triamcinolone acetonide (TA) on cystoid macular edema associated with retinal vein occlusion and diabetic retinopathy. DESIGN: Prospective, interventional, small case series. PARTICIPANTS: Four patients with cystoid macular edema resulting from retinal vein occlusion or diabetic retinopathy of more than 4 months' duration and evaluated as suitable for treatment with intravitreous injection of TA. METHODS: After ophthalmic examination, including visual acuity assessment, intraocular pressure (IOP) measurement, and optical coherence tomography (OCT) analysis, the patients received a single intravitreal injection of 4 mg TA. After the injection, consecutive visual acuity assessment, IOP measurement, and OCT analysis were performed after 1 hour, 6 hours, 1 week, and 2 weeks. MAIN OUTCOME MEASURE: Optical coherence tomography assessment of macular thickness. RESULTS: Macular thickness and edema initially were reduced as early as 1 hour after TA injection. A further continuous decrease was observed during the 2 weeks after treatment. CONCLUSIONS: This rapid effect of intravitreal TA is interpreted to indicate that nongenomic effects on retinal or retinal pigment epithelial cell membranes, or both, may be responsible for this phenomenon. Identifications of these mechanisms may help design alternative, more specific drugs for the treatment of macular edema.
Resumo:
Retinal diseases are nowadays the most common causes of vision threatening in developed countries. Therapeutic advances in this field are hindered by the difficulty to deliver drugs to the posterior segment of the eye. Due to anatomical barriers, the ocular biodisponibility of systemically administered drugs remains poor, and topical instillation is not adequate to achieve therapeutic concentrations of drugs in the back of the eye. Ocular drug delivery has thus become one of the main challenges of modern ophthalmology. A multidisciplinary research is being conducted worldwide including pharmacology, biomaterials, ophthalmology, pharmaceutics, and biology. New promising fields have been developed such as implantable or injectable slow release intravitreal devices and degradable polymers, dispersed polymeric systems for intraocular drug delivery, and transscleral delivery devices such as iontophoresis, osmotic pumps or intra-scleraly implantable materials. The first clinical applications emerging from this research are now taking place, opening new avenues for the treatment of retinal diseases.
Resumo:
The development of new drug delivery systems to target the anterior segment of the eye may offer many advantages: to increase the biodisponibility of the drug, to allow the penetration of drug that cannot be formulated as solutions, to obtain constant and sustained drug release, to achieve higher local concentrations without systemic effects, to target more specifically one tissue or cell type, to reduce the frequency of instillation and therefore increase the observance and comfort of the patient while reducing side effects of frequent instillation. Several approaches are developed, aiming to increase the corneal contact time by modified formulation or reservoir systems, or by increasing the tissue permeability using iontophoresis. To date, no ocular drug delivery system is ideal for all purposes. To maximize treatment efficacy, careful evaluation of the specific pathological condition, the targeted Intraocular tissue and the location of the most severe pathology must be made before selecting the method of delivery most suitable for each individual patient.
Resumo:
The purpose of this study was to evaluate the intraocular pressure (IOP)-lowering effect of modified goniopuncture with the 532-nm Nd : YAG selective laser trabeculoplasty (SLT) laser on eyes after deep sclerectomy with collagen implant (DSCI). This was an interventional cased series. The effects of modified goniopuncture on eyes with insufficient IOP-lowering after DSCI were observed. Goniopuncture was performed using a Q-switched, frequency-doubled 532-nm Nd : YAG laser (SLT-goniopuncture, SLT-G). Outcome measures were amount of IOP-lowering and rapidity of decrease after laser intervention. In all, 10 eyes of 10 patients with a mean age of 71.0±7.7 (SD) years were treated with SLT-G. The mean time of SLT-G after DSCI procedure was 7.1±10.9 months. SLT-G decreased IOP from an average of 16.1±3.4 mm Hg to 14.2±2.8 mm Hg (after 15 min), 13.6±3.9 mm Hg (at 1 day), 12.5±4.1 mm Hg (at 1 month), and 12.6±2.5 (at 6 months) (P<0.0125). There were no complications related to the intervention. Patients in this series achieved an average 22.5% of IOP reduction after SLT-G. The use of the SLT laser appears to be an effective and safe alternative to the traditional Nd : YAG laser for goniopuncture in eyes after DSCI, with potential advantages related to non-perforation of trabeculo-descemet's membrane (TDM).
Resumo:
PURPOSE: To evaluate the potential delay of the retinal degeneration in rd1/rd1 mice using recombinant human glial cell line-derived neurotrophic factor (rhGDNF) encapsulated in poly(D,L-lactide-co-glycolide) (PLGA) microspheres. METHODS: rhGDNF-loaded PLGA microspheres were prepared using a water in oil in water (w/o/w) emulsion solvent extraction-evaporation process. In vitro, the rhGDNF release profile was assessed using radiolabeled factor. In vivo, rhGDNF microspheres, blank microspheres, or microspheres loaded with inactivated rhGDNF were injected into the vitreous of rd1/rd1 mice at postnatal day 11 (PN11). The extent of retinal degeneration was examined at PN28 using rhodopsin immunohistochemistry on whole flat-mount retinas, outer nuclear layer (ONL) cell counting on histology sections, and electroretinogram tracings. Immunohistochemical reactions for glial fibrillary acidic protein (GFAP), F4/80, and rhodopsin were performed on cryosections. RESULTS: Significant delay of rod photoreceptors degeneration was observed in mice receiving the rhGDNF-loaded microspheres compared to either untreated mice or to mice receiving blank or inactivated rhGDNF microspheres. The degeneration delay in the eyes receiving the rhGDNF microspheres was illustrated by the increased rhodopsin positive signals, the preservation of significantly higher number of cell nuclei within the ONL, and significant b-wave increase. A reduction of the subretinal glial proliferation was also observed in these treated eyes. No significant intraocular inflammatory reaction was observed after the intravitreous injection of the various microspheres. CONCLUSIONS: A single intravitreous injection of rhGDNF-loaded microspheres slows the retinal degeneration processes in rd1/rd1 mice. The use of injectable, biodegradable polymeric systems in the vitreous enables the efficient delivery of therapeutic proteins for the treatment of retinal diseases.
Resumo:
Cataract surgery is a common ocular surgical procedure consisting in the implantation of an artificial intraocular lens (IOL) to replace the ageing, dystrophic or damaged natural one. The management of postoperative ocular inflammation is a major challenge especially in the context of pre-existing uveitis. The association of the implanted IOL with a drug delivery system (DDS) allows the prolonged intraocular release of anti-inflammatory agents after surgery. Thus IOL-DDS represents an "all in one" strategy that simultaneously addresses both cataract and inflammation issues. Polymeric DDS loaded with two model anti-inflammatory drugs (triamcinolone acetonide (TA) and cyclosporine A (CsA)) were manufactured in a novel way and tested regarding their efficiency for the management of intraocular inflammation during the 3 months following surgery. The study involved an experimentally induced uveitis in rabbits. Experimental results showed that medicated DDS efficiently reduced ocular inflammation (decrease of protein concentration in aqueous humour, inflammatory cells in aqueous humour and clinical score). Additionally, more than 60% of the loading dose remained in the DDS at the end of the experiment, suggesting that the system could potentially cover longer inflammatory episodes. Thus, IOL-DDS were demonstrated to inhibit intraocular inflammation for at least 3 months after cataract surgery, representing a potential novel approach to cataract surgery in eyes with pre-existing uveitis.