320 resultados para Abathomphalus intermedius


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A high-resolution study of benthic foraminiferal assemblages was performed on a ca. eight metre long sediment core from Gullmar Fjord on the west coast of Sweden. The results of 210Pb- and AMS 14C-datings show that the record includes the two warmest climatic episodes of the last 1500 years: the Medieval Warm Period (MWP) and the recent warming of the 20th century. Both periods are known to be anomalously warm and associated with positive NAO winter indices. Benthic foraminiferal successions of both periods are compared in order to find faunal similarities and common denominators corresponding to past climate changes. During the MWP, Adercotryma glomerata, Cassidulina laevigata and Nonionella iridea dominated the assemblages. Judging from dominance of species sensitive to hypoxia and the highest faunal diversity for the last ca. 2400 years, the foraminiferal record of the MWP suggests an absence of severe low oxygen events. At the same time, faunas and d13C values both point to high primary productivity and/or increased input of terrestrial organic carbon into the fjord system during the Medieval Warm Period. Comparison of the MWP and recent warming revealed different trends in the faunal record. The thin-shelled foraminifer N. iridea was characteristic of the MWP, but became absent during the second half of the 20th century. The recent Skagerrak-Kattegat fauna was rare or absent during the MWP but established in Gullmar Fjord at the end of the Little Ice Age or in the early 1900s. Also, there are striking differences in the faunal diversity and absolute abundances of foraminifera between both periods. Changes in primary productivity, higher precipitation resulting in intensified land runoff, different oxygen regimes or even changes in the fjord's trophic status are discussed as possible causes of these faunal differences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean Drilling Program (ODP) Leg 207, on the Demerara Rise in the western tropical North Atlantic, recovered multiple Cretaceous-Paleogene boundary sections containing an ejecta layer. Sedimentological, geochemical, and paleontological changes across the boundary closely match patterns expected for a mass extinction caused by a single impact. A normally graded, ~2-cm-thick bed of spherules that is interpreted as a primary air-fall deposit of impact ejecta occurs between sediments of the highest Cretaceous Plummerita hantkeninoides foraminiferal zone and the lowest Paleogene P0 foraminiferal zone. There are no other spherule layers in the section. In addition to extinction of Cretaceous taxa, foraminiferal abundance drops from abundant to rare across the boundary. Ir concentrations reach a maximum of ~1.5 ppb at the top of the spherule bed, and the Ir anomaly is associated with enrichment in other siderophile elements. We attribute the unusually well-preserved and relatively simple stratigraphy to the fact that Demerara Rise was close enough (~4500 km) to the Chicxulub impact site to receive ~2 cm of ejecta, yet was far enough away (and perhaps sheltered by the curve of northern South America) to have been relatively unaffected by impact-induced waves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The shallow-water Asellota from the Beagle Channel were investigated, based on material collected at four localities in 2001-2002. A total of 3,124 asellotes were sorted, and three new species and 12 new records of distribution were reported. The Paramunnidae showed the highest species diversity and abundance (11 species and 1,463 specimens). The present research raises the number of species known from the Beagle Channel to 23; of these, 16 were previously reported from the Magellan Straits, representing 69% of similarity. Based on the present results and published data, the faunistic affinities for the shallow-water Asellota was 30% between the Magellan region and the Scotia Arc, and 26% between the Magellan region and the Antarctic Peninsula.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fish species diversity in Lake Nabugabo, Uganda, has declined following establishment of the introduced fish species in the lake. Most of the native fish species have disappeared and the lake is now dominated by the introduced Nile perch, Lates niloticus and the Nile tilapia Oreochromis niloticus. The dominant native fish species include Synodontis afrofischeri, Schilbe intermedius, Rastrineobola argentea and Brycinussadleri. Some of the native fish species that have disappeared from Lake Nabugabo were reported to occur in lakes Kayugi and Kayanja, which are adjacent to Lake Nabugabo but separated from it by extensive papyrus swamps. The Nabugabo lakes are satellite water bodies in the Lake Victoria basin, which is known to have experienced fish species changes due to the introduction of the Nile perch Lates niloticus during the 1960s.The Nabugabo lakes comprising of Lake Nabugabo main, and the smaller lakes Kayanja and Kayugi were investigated between 2000 and 2002 with experimental gill netting to evaluate the potential of these lakes in conservation of fish species diversity. Results show that some native fish species especially Oreochromis esculentus, and Oreochromis variabilis and the haplochromine cichlid Prognathochromis venator that have disappeared from Lake Nabugabo still occur in Lakes Kayanja and Kayugi. Inshore habitats with macrophyte cover were also found to be important habitats for the endangered native fish species in the Nabugabo lakes. These lakes and inshore habitats need to be protected to conserve the endangered native fish species and to reduce further decline in fish species diversity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A research work entitled: “Microbiological analysis of traditionally fermented milk (Ikivuguto) sold in Kinigi Sector of Musanze District,” was carried out at Higher Learning Institution of Applied Sciences (INES-Ruhengeri) Laboratory of Microbiology located near Volcanoes in the Northern Province of Rwanda. The main objective of this work was to determine the microbiological quality of traditionally fermented milk, which is consumed by Kinigi Center local people. The hypothesis was to analyze if traditionally fermented milk commercialized in Kinigi restaurants contained pathogenic bacteria such as fecal coliforms and Escherichia coli , in addition to staphylococci and yeasts. Milk samples were collected from Kinigi sector and examined in the microbiology laboratory in order to assess the microbiological quality and safety of traditionally fermented milk in rural areas. The samples were analyzed qualitatively and quantitatively for the microbes found in fermented milk sold in Kinigi Center, and the results were as follows: 7.21x107 CFU/ml for total counts; 3.89x107 CFU/ml for Lactobacillus ; 2.77x107 CFU/ml for yeasts; 1.196x105 CFU/ml for total coliforms; 9.63x104 CFU/ml for fecal coliforms and 8.92x103 CFU/ml for staphylococci. Biochemical tests were carried out and the results showed that identified pathogens were E. coli, Providencia alcalifaciens , and the staphylococci group. It was found that fermented milk contained genera and species of Staphylococcus haemolyticus , Staphylococcus aureus , Staphylococcus intermedius , Staphylococcus xylosus and Staphylococcus saprophyticus . Findings showed that the commercial milk samples were cross-contaminated by different pathogens from environment. These contaminations could have been due to improper handling, presence of flies, soil erosion, dust from atmosphere, as well as contaminated milk vessels or pots, stirrers and unpasteurized water. It was concluded that local farmers and milk retailers did not adhere to required hygienic conditions for milk safety. In this regard, the sold traditional fermented milk does not meet health and safety standards because people did not respect good manufacturing practices. The hypothesis and main objective were confirmed, because traditionally fermented milk of Kinigi was cross-contaminated before consumption. Thus, it would be better to train farmers in the areas of product hygiene, sanitation and safety during milking, processing and marketing.