988 resultados para AMAZON RIVER
Resumo:
This chapter reviews green grains from the shelf of French Guiana as a regional example of sedimentologic process occurring on the whole stable continental margin from the Amazon to the Orinoco River. Green grains have been observed and analyzed off the Orinoco delta and on the continental shelf of Surinam. These green grains were identified as “chamosite” and “glauconite.” The muddy coast of French Guiana is generally very flat and occupied by wet swamps and mangrove as a result of the equatorial climate. Most green grains on the continental shelf represent the verdine facies. Green grains are ubiquitous on the shelf and top of the slope off French Guiana. Two sedimentological facies exist: glaucony deeper than 150 m and verdine at shallower depths. The verdine facies has mainly developed from mineral debris and especially chloritized biotite. Carbonate bioclasts and faecal pellets are also utilized. The mica flakes were never wholly replaced by authigenic clay and the phenomenon leads to mixed grains where authigenic and substrate remains are recognizable. Carbonate substrates lead to mainly clay pure green grains becasue the initial carbonate has been dissolved. The formation of verdine can be located in a general marine environment at a comparatively warm sea-water temperature and at a depth probably shallower than 60 m.
Resumo:
Flood related scientific and community-based data are rarely systematically collected and analysed in the Philippines. Over the last decades the Pagsangaan River Basin, Leyte, has experienced several flood events. However, documentation describing flood characteristics such as extent, duration or height of these floods are close to non-existing. To address this issue, computerized flood modelling was used to reproduce past events where there was data available for at least partial calibration and validation. The model was also used to provide scenario-based predictions based on A1B climate change assumptions for the area. The most important input for flood modelling is a Digital Elevation Model (DEM) of the river basin. No accurate topographic maps or Light Detection And Ranging (LIDAR)-generated data are available for the Pagsangaan River. Therefore, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Map (GDEM), Version 1, was chosen as the DEM. Although the horizontal spatial resolution of 30 m is rather desirable, it contains substantial vertical errors. These were identified, different correction methods were tested and the resulting DEM was used for flood modelling. The above mentioned data were combined with cross-sections at various strategic locations of the river network, meteorological records, river water level, and current velocity to develop the 1D-2D flood model. SOBEK was used as modelling software to create different rainfall scenarios, including historic flooding events. Due to the lack of scientific data for the verification of the model quality, interviews with local stakeholders served as the gauge to judge the quality of the generated flood maps. According to interviewees, the model reflects reality more accurately than previously available flood maps. The resulting flood maps are now used by the operations centre of a local flood early warning system for warnings and evacuation alerts. Furthermore these maps can serve as a basis to identify flood hazard areas for spatial land use planning purposes.
Resumo:
Flood flows in inundated urban environment constitute a natural hazard. During the 12- 13 January 2011 flood of the Brisbane River, detailed water elevation, velocity and suspended sediment data were recorded in an inundated street at the peak of the flood. The field observations highlighted a number of unusual flow interactions with the urban surroundings. These included some slow fluctuations in water elevations and velocity with distinctive periods between 50 and 100 s caused by some local topographic effect (choking), superposed with some fast turbulent fluctuations. The suspended sediment data highlighted some significant suspended sediment loads in the inundated zone.
Resumo:
Ross River virus is a mosquito-borne alphavirus that causes approximately 5000 cases of epidemic polyarthritis in Australia each year and has direct medical-associated costs of approximately US$15 million annually. While mosquito control programs are able, at best, to contain rather than prevent this disease, natural infection with Ross River virus confers lifelong protection against subsequent clinical infection. A killed-virus vaccine has been developed, which is in Phase III clinical trials. Analyses of intra-host genetic diversity and of long-term evolutionary changes in Ross River virus populations suggest that antigenic variation is unlikely to pose a threat to the efficacy of this vaccine.
Resumo:
This study investigates travel behaviour and wait-time activities as a component of passenger satisfaction with public transport in Brisbane, Australia. Australian transport planners recognise a variety of benefits to encouraging a mode shift away from automobile travel in favour of active and public transport use. Efforts to increase public transport ridership have included introducing state of the art passenger information systems, improving physical station access, and integrating system pricing, routes and scheduling for train, bus and ferry. Previous research regarding satisfaction with public transport emphasizes technical dimensions of service quality, including the timing and reliability of service. Those factors might be especially significant for frequent (commuting) travellers who look to balance the cost and efficiency of their travel options. In contrast, infrequent (leisure) passengers may be more concerned with way finding and the sensory experience of the journey. Perhaps due to the small relative proportion of trips made by river ferry compared to bus and rail, this mode of public transport has not received as much attention in travel-behaviour research. This case study of Brisbane’s river ferry system examines ferry passengers at selected terminals during peak and off-peak travel times to find out how travel behaviours and activities correlate to satisfaction with ferry travel. Data include 416 questionnaires completed by passengers intercepted during wait times at seven CityCat terminals in Brisbane. Descriptive statistical analysis revealed associations between specific wait time activities and satisfaction levels that could inform planners seeking to increase ridership and quality of life through ferry-oriented development.
Resumo:
The thesis was a step forward in predicting the levels and sources of polycyclic aromatic hydrocarbons (PAHs) in sediments of Brisbane river, especially after the Brisbane floods in 2011. It employed different statistical techniques to provide valuable information that may assist source control and formulation of pollution mitigation measures for the river.
Resumo:
“Epidemics” of a benign disease causing polyarthralgia and rash were first described in Australia in 1927.63 Following the recovery of the causative agent and the advent of serologic tests able to diagnose Ross River virus infection, epidemic polyarthritis has been recognized as endemic in Australia and has occurred as epidemics in numerous Pacific nations. Approximately 4000 cases of epidemic polyarthritis are reported in Australia each year, with a peak of 7800 cases in 1996. Some confusion has been generated recently by use of the term Ross River fever to describe clinical Ross River virus infections because fever does not develop in more than half of those with clinical disease.59 Additional confusion has been generated by efforts to describe any polyarthritis caused by an Australian arbovirus as epidemic polyarthritis. The term epidemic polyarthritis should be used to describe only clinical disease caused by Ross River virus.
Resumo:
Objective: To find out the present prevalent situation of the endemic fluorosis in the lower reaches of Xiao Qing River , and to look for an effective way to altering sources to lower fluoride level. Methods: To determine the water fluoride content in the drinking water sources and investigate the basic condition of the water sources (type of the water sources, the depth of well, etc) in the three towns of this area . Make a sampling survey of the children aged from 8 to 12 about the dent al fluoro sis and determine the urine fluoride, and the skeletal fluorosis among the crowd over 16 y ears of age. Results: The survey shows that the lower reaches of Xiaoqing river belong to the drinking water type of endemic fluorosis caused by drinking deep well water. In this area, 65.71% of the water sources contain high level of fluoride, 57.51% of the children suffer from dental fluorosis, 0.58% of the crowd over 16 years of age suffer from skeletal fluorosis. High water fluoride rate is related with the depth of the well. If the well is over 500 metres deep, the fluoride content rate is clearly low. Conclusions: In this area, there are still some water sources which contain normal level of fluoride. By increasing the depth of the well down to 500 metres, the problem of high fluoride in water might be solved.
Resumo:
Floods are among the most devastating events that affect primarily tropical, archipelagic countries such as the Philippines. With the current predictions of climate change set to include rising sea levels, intensification of typhoon strength and a general increase in the mean annual precipitation throughout the Philippines, it has become paramount to prepare for the future so that the increased risk of floods on the country does not translate into more economic and human loss. Field work and data gathering was done within the framework of an internship at the former German Technical Cooperation (GTZ) in cooperation with the Local Government Unit of Ormoc City, Leyte, The Philippines, in order to develop a dynamic computer based flood model for the basin of the Pagsangaan River. To this end, different geo-spatial analysis tools such as PCRaster and ArcGIS, hydrological analysis packages and basic engineering techniques were assessed and implemented. The aim was to develop a dynamic flood model and use the development process to determine the required data, availability and impact on the results as case study for flood early warning systems in the Philippines. The hope is that such projects can help to reduce flood risk by including the results of worst case scenario analyses and current climate change predictions into city planning for municipal development, monitoring strategies and early warning systems. The project was developed using a 1D-2D coupled model in SOBEK (Deltares Hydrological modelling software package) and was also used as a case study to analyze and understand the influence of different factors such as land use, schematization, time step size and tidal variation on the flood characteristics. Several sources of relevant satellite data were compared, such as Digital Elevation Models (DEMs) from ASTER and SRTM data, as well as satellite rainfall data from the GIOVANNI server (NASA) and field gauge data. Different methods were used in the attempt to partially calibrate and validate the model to finally simulate and study two Climate Change scenarios based on scenario A1B predictions. It was observed that large areas currently considered not prone to floods will become low flood risk (0.1-1 m water depth). Furthermore, larger sections of the floodplains upstream of the Lilo- an’s Bridge will become moderate flood risk areas (1 - 2 m water depth). The flood hazard maps created for the development of the present project will be presented to the LGU and the model will be used to create a larger set of possible flood prone areas related to rainfall intensity by GTZ’s Local Disaster Risk Management Department and to study possible improvements to the current early warning system and monitoring of the basin section belonging to Ormoc City; recommendations about further enhancement of the geo-hydro-meteorological data to improve the model’s accuracy mainly on areas of interest will also be presented at the LGU.
Resumo:
Ross River virus (RRV) is the most common vector-borne disease in Australia. It is vitally important to make appropriate projections on the future spread of RRV under various climate change scenarios because such information is essential for policy-makers to identify vulnerable communities and to better manage RRV epidemics. However, there are many methodological challenges in projecting the impact of climate change on the transmission of RRV disease. This study critically examined the methodological issues and proposed possible solutions. A literature search was conducted between January and October 2012, using the electronic databases Medline, Web of Science and PubMed. Nineteen relevant papers were identified. These studies demonstrate that key challenges for projecting future climate change on RRV disease include: (1) a complex ecology (e.g. many mosquito vectors, immunity, heterogeneous in both time and space); (2) unclear interactions between social and environmental factors; and (3) uncertainty in climate change modelling and socioeconomic development scenarios. Future risk assessments of climate change will ultimately need to better understand the ecology of RRV disease and to integrate climate change scenarios with local socioeconomic and environmental factors, in order to develop effective adaptation strategies to prevent or reduce RRV transmission.
Resumo:
The Mekong is the most productive river fishery in the world, and such as, the Mekong River Basin (MRB) is very important to very large human populations across the region as a source of revenue (through fishing and marketing of aquatic resources products) and as the major source for local animal protein. Threats to biodiversity in the MRB, either to the fishery sector itself or to other sectors are a major concern, even though currently, fisheries across this region are still very productive. If not managed properly however, fish population declines will cause significant economic impact and affect livelihoods of local people and will have a major impact on food security and nutrition. Biodiversity declines will undoubtedly affect food security, income and socio-economic status of people in the MRB that depend on aquatic resources. This is an indicator of unsustainable development and hence should be avoided. Genetic diversity (biodiversity) that can be measured using techniques based on DNA markers; refers to variation within and among populations within the same species or reproductive units. In a population, new genetic variation is generated by sexual recombination contributed by individuals with mutations in genes and chromosomes. Over time, populations of a species that are not reproducing together will diverge as differential impacts of selection and genetic drift change their genetic attributes. For mud carp (Henicorhynchus spp.), understanding the status of breeding units in the MRB will be important for their long term persistence, sustainability and for implementing effective management strategies. Earlier analysis of stock structure in two economically important mud carp species (Henicorhynchus siamensis and H. lobatus) in the MRB completed with mtDNA markers identified a number of populations of both species where gene flow had apparently been interrupted or reduced but applying these data directly to management unit identification is potentially compromised because information was only available about female dispersal patterns. The current study aimed to address this problem and to fully assess the extent of current gene flow (nDNA) and reproductive exchange among selected wild populations of two species of carp (Henicorhynchus spp.) of high economic importance in the MRB using combined mtDNA and nDNA markers. In combination, the data can be used to define effective management units for each species. In general, nDNA diversity for H. lobatus (with average allelic richness (A) 7.56 and average heterozygosity (Ho) 0.61) was very similar to that identified for H. siamensis (A = 6.81 and Ho = 0.75). Both mud carp species show significant but low FST estimates among populations as a result of lower genetic diversity among sampled populations compared with genetic diversity within populations that may potentially mask any 'real' population structure. Overall, population genetic structure patterns from mtDNA and nDNA in both Henicorhynchus species were largely congruent. Different population structures however, were identified for the two Henicorhynchus species across the same geographical area. Apparent co-similarity in morphology and co-distribution of these two relatively closely related species does not apparently imply parallel evolutionary histories. Differences in each species population structure likely reflect historical drainage rearrangement of the Mekong River. The data indicate that H. siamensis is likely to have occupied the Mekong system for much longer than has H. lobatus in the past. Two divergent stocks were identified for H. lobatus in the MRB below the Khone Falls while a single stock had been evident in the earlier mtDNA study. This suggests that the two Henicorhynchus species may possess different life history traits and that different patterns of gene flow has likely influenced modern genetic structure in these close congeners. In combination, results of the earlier mtDNA and the current study have implications for effective management of both Henicorhynchus species across the MRB. Currently, both species are essentially treated as a single management unit in this region. This strategy may be appropriate for H. lobatus as a single stock was evident in the main stream of the MRB, but may not be appropriate for H. siamensis as more than a single stock was identified across the same range for this species. Management strategies should consider this difference to conserve overall biodiversity (local discrete populations) and this will include maintaining natural habitat and migration pathways, provision of fish sanctuaries (refuges) and may also require close monitoring of any stock declines, a signal that may require effective recovery strategies.
Resumo:
Ross River virus (RRV) infection is a debilitating disease which has a significant impact on population health, economic productivity and tourism in Australia. This study examined epidemiological patterns of the RRV disease in Queensland, Australia between January 2001 and December 2011 at a statistical local area level. Spatial-temporal analyses were used to identify the patterns of the disease distribution over time stratified by age, sex and space. The results show that the mean annual incidence was 54 per 100,000 people, with a male: female ratio of 1:1.1. Two space-time clusters were identified: the areas adjacent to Townsville, on the eastern coast of Queensland; and the south east areas. Thus, although public health intervention should be considered across all areas in which RRV occurs, it should specifically focus on these high risk regions, particularly during the summer and autumn to reduce the social and economic impacts of RRV.
Resumo:
Dry river beds are common worldwide and are rapidly increasing in extent due to the effects of water management and prolonged drought periods due to climate change. While attention has been given to the responses of aquatic invertebrates to drying rivers, few studies exist on the terrestrial invertebrates colonizing dry river beds. Dry river beds are physically harsh and they often differ substantially in substrate, topography, microclimate and inundation frequency from adjacent riparian zones. Given these differences, we predicted that dry river beds provide a unique habitat for terrestrial invertebrates, and that their assemblage composition differs from that in adjacent riparian zones. Dry river beds and riparian zones in Australia and Italy were sampled for terrestrial invertebrates with pitfall traps. Sites differed in substrate type, climate and flow regime. Dry river beds contained diverse invertebrate assemblages and their composition was consistently different from adjacent riparian zones, irrespective of substrate, climate or hydrology. Although some taxa were shared between dry river beds and riparian zones, 66 of 320 taxa occurred only in dry river beds. Differences were due to species turnover, rather than shifts in abundance, indicating that dry river bed assemblages are not simply subsets of riparian assemblages. Some spatial patterns in invertebrate assemblages were associated with environmental variables (irrespective of habitat type), but these associations were statistically weak. We suggest that dry river beds are unique habitats in their own right. We discuss potential human stressors and management issues regarding dry river beds and provide recommendations for future research.
Resumo:
This article develops methods for spatially predicting daily change of dissolved oxygen (Dochange) at both sampled locations (134 freshwater sites in 2002 and 2003) and other locations of interest throughout a river network in South East Queensland, Australia. In order to deal with the relative sparseness of the monitoring locations in comparison to the number of locations where one might want to make predictions, we make a classification of the river and stream locations. We then implement optimal spatial prediction (ordinary and constrained kriging) from geostatistics. Because of their directed-tree structure, rivers and streams offer special challenges. A complete approach to spatial prediction on a river network is given, with special attention paid to environmental exceedances. The methodology is used to produce a map of Dochange predictions for 2003. Dochange is one of the variables measured as part of the Ecosystem Health Monitoring Program conducted within the Moreton Bay Waterways and Catchments Partnership.
Resumo:
Catchment and riparian degradation has resulted in declining ecosystem health of streams worldwide. With restoration a priority in many regions, there is an increasing interest in the scale at which land use influences stream ecosystem health. Our goal was to use a substantial data set collected as part of a monitoring program (the Southeast Queensland, Australia, Ecological Health Monitoring Program data set, collected at 116 sites over six years) to identify the spatial scale of land use, or the combination of spatial scales, that most strongly influences overall ecosystem health. In addition, we aimed to determine whether the most influential scale differed for different aspects of ecosystem health. We used linear-mixed models and a Bayesian model-averaging approach to generate models for the overall aggregated ecosystem health score and for each of the five component indicators (fish, macroinvertebrates, water quality, nutrients, and ecosystem processes) that make up the score. Dense forest close to the survey site, mid-dense forest in the hydrologically active nearstream areas of the catchment, urbanization in the riparian buffer, and tree cover at the reach scale were all significant in explaining ecosystem health, suggesting an overriding influence of forest cover, particularly close to the stream. Season and antecedent rainfall were also important explanatory variables, with some land-use variables showing significant seasonal interactions. There were also differential influences of land use for each of the component indicators. Our approach is useful given that restoring general ecosystem health is the focus of many stream restoration projects; it allowed us to predict the scale and catchment position of restoration that would result in the greatest improvement of ecosystem health in the regions streams and rivers. The models we generated suggested that good ecosystem health can be maintained in catchments where 80% of hydrologically active areas in close proximity to the stream have mid-dense forest cover and moderate health can be obtained with 60% cover.