890 resultados para ADVERSE-REACTIONS
Resumo:
Previous studies have showed that SIN-1, a nitric oxide (NO) donor, injected into the dorsolateral column of the periaqueductal gray (dlPAG) induces flight reactions. This drug, however, can also produce peroxynitrite, which may interfere in this effect. In addition, it is also unknown if this effect is mediated by local activation of soluble guanylate cyclase (sGC). The aims of this study, therefore, were (1) to investigate if NOC-9 (6-(2-Hydroxy-1-methyl-2-nitrosohydrazino)-N-methyl-1-hexanamine), a NO donor that does not produce peroxynitrite, would produce flight reactions after intra-dlPAG administration similar to those induced by SIN-1; (2) to verify if these responses could be prevented by local injection of a selective guanylate cyclase inhibitor (ODQ). Male Wistar rats (n = 5-12) with cannulae aimed at the dlPAG received injections of TRIS (pH 10.0, 0.5 mu l), NOC-9 (75 and 150 nmol), saline or SIN-1 (200 nmol) and were placed in an open arena for 10 min. In a subsequent experiment animals (n = 7-8) were pretreated with ODQ (1 nmol/0.5 mu l) before receiving NOC-9 150 nmol. NOC-9 induced a significant dose-dependent increase in flight reactions in the first minute after injection (% of animals displaying flight: vehicle = 0%, NOC 75 = 67%. NOC 150 = 75%). SIN-1 had a similar effect (100% of animals showing flight) but the effects lasted longer (10 min) than those of NOC-9. The effect of NOC-9 (150 nmol) was prevented by pretreatment with ODQ (% of animals displaying flight: vehicle + NOC 150 = 71 %, ODQ + NOC 150 = 37%). The results suggest that NO donors injected into the dlPAG induce defensive responses that are not mediated by secondary peroxynitrite production. Moreover, they also indicate that these defensive responses depend on activation of local sGC. The data strengthen the proposal that NO can modulate defensive reactions in the dlPAG. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
This study evaluates the mRNA expression profile of genes TIMP1, TIMP2, MMP2 and MMP9 in diagnostic bone marrow samples from 134 consecutive ALL children by real-time quantitative PCR. A significant association was observed between higher expression levels of MMP9 and low risk group and absence of extramedullary infiltration and higher expression levels of TIMP2 and MMP2 with T-ALL. TIMP1 gene expression values higher than the median were associated with a significantly lower 5-year event free-survival in univariable (P = 0.04) and multivariable analysis (P = 0.01). Our data address new information in the complex interaction of the migration/adhesion genes and childhood ALL. (c) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Objective: To provide prevalence data on several key mental health indicators for young people aged 15 to 24 years. Methods: A cross-sectional household survey, using telephone recruitment followed by a postal pencil-and-paper questionnaire. The overall response rate was 67.3%. Results: Difficulties with interpersonal relationships are common causes of distress for young people, in particular problems with parents, problems with friends and relationship break-ups. Depressive symptomatology is common among young people with approximately one in eight males and one in four females reporting current depressive symptomatology. One in three young people reported that they had had suicidal thoughts at some time in the past, 1.2% of young people reported that they had made a plan on how to kill themselves in the four-week period prior to completing the survey and 6.9% of young people reported that they had tried to kill themselves at some time during their life time (4.2% of males and 9.0% of females). Conclusions and implications: The prevalence figures for the various mental health indicators presented in this paper represent good baseline information upon which to examine the progress over time of interventions designed to improve the mental health of young people.
Resumo:
A range of topical products are used in veterinary medicine. The efficacy of many of these products has been enhanced by the addition of penetration enhancers. Evolution has led to not only a highly specialized skin in animals and humans, but also one whose anatomical structure and skin permeability differ between the various species. The skin provides an excellent barrier against the ingress of environmental contaminants, toxins, and microorganisms while performing a homeostatic role to permit terrestrial life. Over the past few years, major advances have been made in the field of transdermal drug delivery. An increasing number of drugs are being added to the list of therapeutic agents that can be delivered via the skin to the systemic circulation where clinically effective concentrations are reached. The therapeutic benefits of topically applied veterinary products is achieved in spite of the inherent protective functions of the stratum corneum (SQ, one of which is to exclude foreign substances from entering the body. Much of the recent success in this field is attributable to the rapidly expanding knowledge of the SC barrier structure and function. The bilayer domains of the intercellular lipid matrices within the SC form an excellent penetration barrier, which must be breached if poorly penetrating drugs are to be administered at an appropriate rate. One generalized approach to overcoming the barrier properties of the skin for drugs and biomolecules is the incorporation of suitable vehicles or other chemical compounds into a transdermal delivery system. Indeed, the incorporation of such compounds has become more prevalent and is a growing trend in transdermal drug delivery. Substances that help promote drug diffusion through the SC and epidermis are referred to as penetration enhancers, accelerants, adjuvants, or sorption promoters. It is interesting to note that many pour-on and spot-on formulations used in veterinary medicine contain inert ingredients (e.g., alcohols, amides, ethers, glycols, and hydrocarbon oils) that will act as penetration enhancers. These substances have the potential to reduce the capacity for drug binding and interact with some components of the skin, thereby improving drug transport. However, their inclusion in veterinary products with a high-absorbed dose may result in adverse dermatological reactions (e.g., toxicological irritations) and concerns about tissue residues. These a-re important considerations when formulating a veterinary transdermal product when such compounds ate added, either intentionally or otherwise, for their penetration enhancement ability. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The catalytic properties of enzymes are usually evaluated by measuring and analyzing reaction rates. However, analyzing the complete time course can be advantageous because it contains additional information about the properties of the enzyme. Moreover, for systems that are not at steady state, the analysis of time courses is the preferred method. One of the major barriers to the wide application of time courses is that it may be computationally more difficult to extract information from these experiments. Here the basic approach to analyzing time courses is described, together with some examples of the essential computer code to implement these analyses. A general method that can be applied to both steady state and non-steady-state systems is recommended. (C) 2001 academic Press.
Resumo:
This paper describes the background and current status of an OMERACT facilitated effort to improve the consistency of adverse event reporting in rheumatology clinical trials, The overall goal is the development of an adverse event assessment tool that would provide a basis for use of common terminology and improve the consistency of reporting severity of side effects within rheumatology clinical trials and during postmarketing surveillance. The resulting Rheumatology Common Toxicity Criteria Index encompassed the following organ systems: allergic/immunologic, cardiac, ENT, gastrointestinal, musculoskeletal, neuropsychiatric, ophthalmologic, pulmonary and skin/integument. Before this tool is widely accepted, its validity, consistency, and feasibility need to be assessed in clinical trials.
Resumo:
We describe the progress towards developing a patient rated toxicity index that meets all of the patient-important attributes defined by the OMERACT Drug Safety Working Party, These attributes are frequency, severity. importance to patient, importance to the clinician, impact on economics, impact on activities, and integration of adverse effects with benefits. The Stanford Toxicity Index (STI) has been revised to collect all attributes with the exception of impact on activities. However, since the STI is a part of the Health Assessment Questionnaire (HAQ). impact on activities is collected by the HAQ. In particular, a new question asks patients to rate overall satisfaction, taking into consideration both benefits and adverse effects. The nest step in the development of this tool is to ensure that the STI meets the OMERACT filter of truth, discrimination, and feasibility. Although truth and feasibility have been confirmed by comparisons within the ARAMIS database, discrimination needs to be assessed in clinical trials.
Resumo:
Computational simulations of the title reaction are presented, covering a temperature range from 300 to 2000 K. At lower temperatures we find that initial formation of the cyclopropene complex by addition of methylene to acetylene is irreversible, as is the stabilisation process via collisional energy transfer. Product branching between propargyl and the stable isomers is predicted at 300 K as a function of pressure for the first time. At intermediate temperatures (1200 K), complex temporal evolution involving multiple steady states begins to emerge. At high temperatures (2000 K) the timescale for subsequent unimolecular decay of thermalized intermediates begins to impinge on the timescale for reaction of methylene, such that the rate of formation of propargyl product does not admit a simple analysis in terms of a single time-independent rate constant until the methylene supply becomes depleted. Likewise, at the elevated temperatures the thermalized intermediates cannot be regarded as irreversible product channels. Our solution algorithm involves spectral propagation of a symmetrised version of the discretized master equation matrix, and is implemented in a high precision environment which makes hitherto unachievable low-temperature modelling a reality.
Resumo:
Some efficient solution techniques for solving models of noncatalytic gas-solid and fluid-solid reactions are presented. These models include those with non-constant diffusivities for which the formulation reduces to that of a convection-diffusion problem. A singular perturbation problem results for such models in the presence of a large Thiele modulus, for which the classical numerical methods can present difficulties. For the convection-diffusion like case, the time-dependent partial differential equations are transformed by a semi-discrete Petrov-Galerkin finite element method into a system of ordinary differential equations of the initial-value type that can be readily solved. In the presence of a constant diffusivity, in slab geometry the convection-like terms are absent, and the combination of a fitted mesh finite difference method with a predictor-corrector method is used to solve the problem. Both the methods are found to converge, and general reaction rate forms can be treated. These methods are simple and highly efficient for arbitrary particle geometry and parameters, including a large Thiele modulus. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Some materials exhibit a combustion event during mechanical alloying, which results in the rapid transformation of reactants into products, while others show a slow transformation of reactants into products, In this paper, the continuous W + C --> WC reaction is compared to the Ti + C --> TiC combustion reaction. Rietveld refinement of X-ray diffraction patterns is used to show that these particular reactions proceed through different pathways, determined by crystallographic factors of the reactants. When a crystallographic relationship exists between the reactants and the products, such as that between W and WC, the product forms slowly over a period of time. In contrast, insertion of C into the Ti structure is associated with atomic rearrangements within the crowded lattice planes and the subsequent catastrophic failure of the reactant lattices results in combustion to form TiC. (C) 2001 Academic Press.