343 resultados para ADDUCT


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The metabolic conjugation of exogenous and endogenous carboxylic acid substrates with endogenous glucuronic acid, mediated by the uridine diphosphoglucuronosyl transferase (UGT) superfamily of enzymes, leads to the formation of acyl glucuronide metabolites. Since the late 1970s, acyl glucuronides have been increasingly identified as reactive electrophilic metabolites, capable of undergoing three reactions: intramolecular rearrangement, hydrolysis, and intermolecular reactions with proteins leading to covalent drug-protein adducts. This essential dogma has been accepted for over a decade. The key question proposed by researchers, and now the pharmaceutical industry, is: does or can the covalent modification of endogenous proteins, mediated by reactive acyl glucuronide metabolites, lead to adverse drug reactions, perhaps idiosyncratic in nature? This review evaluates the evidence for acyl glucuronide-derived perturbation of homeostasis, particularly that which might result from the covalent modification of endogenous proteins and other macromolecules. Because of the availability of acyl glucuronides for test tube/in vitro experiments, there is now a substantial literature documenting their rearrangement, hydrolysis and covalent modification of proteins in vitro. It is certain from in vitro experiments that serum albumin, dipeptidyl peptidase IV, tubulin and UGTs are covalently modified by acyl glucuronides. However, these in vitro experiments have been specifically designed to amplify any interference with a biological process in order to find biological effects. The in vivo situation is not at all clear. Certainly it must be concluded that all humans taking carboxylate drugs that form reactive acyl glucuronides will form covalent drug-protein adducts, and it must also be concluded that this in itself is normally benign. However, there is enough in vivo evidence implicating acyl glucuronides, which, when backed up by in vivo circumstantial and documented in vitro evidence, supports the view that reactive acyl glucuronides may initiate toxicity/immune responses. In summary, though acyl glucuronide-derived covalent modification of endogenous macromolecules is well-defined, the work ahead needs to provide detailed links between such modification and its possible biological consequences. (C) 2003 Elsevier Science Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The outer-sphere oxidation of Fell in the mixed-valence complex trans-[(LCoNCFeII)-Co-14S-N-III(CN)(6)](-), being L-14S an N3S2 macrocylic donor set on the cobalt(III) center, has been studied. The comparison with the known processes of N-5 macrocycle complexes has been carried out in view of the important differences occurring on the redox potential of the cobalt center. The results indicate that the outer-sphere oxidation reactions with S2O82- and [Co(ox)(3)](3-) involve a great amount of solvent-assisted hydrogen bonding that, as a consequence from the change from two amines to sulfur donors, are more restricted. This is shown by the more positive values found for DeltaS(double dagger) and DeltaV(double dagger). The X-ray structure of the oxidized complex has been determined, and it is clearly indicative of the above-mentioned solvent-assisted hydrogen bonding between nitrogen and cyanide donors on the cobalt and iron centers, respectively. trans-[(LCoNCFeIII)-Co-14S-N-III(CN)(6)], as well as the analogous N-5 systems trans-[(LCoNCFeIII)-Co-14-N-III(CN)(6)], trans-[(LCoNCFeIII)-Co-15-N-III-(CN)(6)], and cis-[(LCoNCFeIII)-Co-n-N-III(CN)(6)], Oxidize water to hydrogen peroxide at pH > 10 with a rather simple stoichiometry, i.e., [(LCoNCFeIII)-Co-n-N-III(CN)(5)] + OH- - [(LCoNCFeII)-Co-n-N-III(CN)(5)](-) + 1/2H(2)O(2). In this way, the reversibility of the iron oxidation process is achieved. The determination of kinetic and thermal and pressure activation parameters for this water to hydrogen peroxide oxidation leads to the kinetic determination of a cyanide based OH- adduct of the complex. A second-order dependence on the base concentration is associated with deprotonation of this adduct to produce the final inner-sphere reduction process. The activation enthalpies are found to be extremely low (15 to 35 kJ mol(-1)) and responsible for the very fast reaction observed. The values of DeltaS(double dagger) and DeltaV(double dagger) (-76 to -113 J K-1 mol(-1) and -5.5 to -8.9 cm(3) mol(-1), respectively) indicate a highly organized but not very compressed transition state in agreement with the inner-sphere one-electron transfer from O2- to Fe-III.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tamoxifen is a known hepatocarcinogen in rats and is associated with an increased incidence of endometrial. cancer in patients. One mechanism for these actions is via bioactivation, where reactive metabolites are generated that are capable of binding to DNA or protein. Several metabolites of tamoxifen have been identified that appear to predispose to adduct formation. These include alpha-hydroxytamoxifen, alpha,4-dihydroxytamoxifen, and alpha-hydroxy-N-desmethyltamoxifen. Previous studies have shown that cytochrome P450 (P450) enzymes play an important role in the biotransformation of tamoxifen. The aim of our work was to determine which P450 enzymes were capable of producing a-hydroxylated metabolites from tamoxifen. When tamoxifen (18 or 250,mu M) was used as the substrate, P450 3A4, and to a lesser extent, P450 2D6, P450 2B6, P450 3A5, P450 2C9, and P450 2C19 all produced a metabolite with the same HPLC retention time as alpha-hydroxytamoxifen at either substrate concentration tested. This peak was well-separated from 4-hydroxy-N-desmethyltamoxifen, which eluted substantially later under the chromatographic conditions used. No alpha,4-dihydroxytamoxifen was detected in incubations with any of the forms with tamoxifen as substrate. However, when 4-hydroxytamoxifen (100,mu M) was used as the substrate, P450 2B6, P450 3A4, P450 3A5, P450 1B1, P450 1A1, and P450 2D6 all produced detectable concentrations of a,4-dihydroxytamoxifen. These studies demonstrate that multiple human P450s, including forms found in the endometrium, may generate reactive metabolites in women undergoing tamoxifen therapy, which could subsequently play a role in the development of endometrial cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A common problem encountered during the development of MS methods for the quantitation of small organic molecules by LGMS is the formation of non-covalently bound species or adducts in the electrospray interface. Often the population of the molecular ion is insignificant compared to those of all other forms of the analyte produced in the electrospray, making it difficult to obtain the sensitivity required for accurate quantitation. We have investigated the effects of the following variables: orifice potential, nebulizer gas flow, temperature, solvent composition and the sample pH on the relative distributions of ions of the types MH+, MNa+, MNH+, and 2MNa(+), where M represents a 4 small organic molecule: BAY 11-7082 ((E)-3-[4-methylphenylsulfonyl]-2-propenenitrile). Orifice potential, solvent composition and the sample pH had the greatest influence on the relative distributions of these ions, making these parameters the most useful for optimizing methods for the quantitation of small molecules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Significant new insights into the interactions of the potent insulin-enhancing compound bis(maltolato)oxovanadium(IV) (BMOV) with the serum proteins, apo-transferrin and albumin, are presented. Identical reaction products are observed by electron paramagnetic resonance (EPR) with either BMOV or vanadyl sulfate (VOSO4) in solutions of human serum apo-transferrin. Further detailed study rules out the presence of a ternary ligand-vanadyl-transferrin complex proposed previously. By contrast, differences in reaction products are observed for the interactions of BMOV and VOSO4 with human serum albumin (HSA), wherein adduct formation between albumin and BMOV is detected. In BMOV-albumin solutions, vanadyl ions are bound in a unique manner not observed in comparable solutions Of VOSO4 and albumin. Presentation of chelated vanadyl ions precludes binding at the numerous nonspecific sites and produces a unique EPR spectrum which is assigned to a BMOV-HSA adduct. The adduct species cannot be produced, however, from a solution Of VOSO4 and HSA titrated with maltol. Addition of maltol to a VOSO4-HSA solution instead results in formation of a different end product which has been assigned as a ternary complex, VO(ma)(HSA). Furthermore, analysis of solution equilibria using a model system of BMOV with 1-methylimidazole (formation constant log K = 4.5(1), by difference electronic absorption spectroscopy) lends support to an adduct binding mode (VO(ma)(2)-HSA) proposed herein for BMOV and HSA. This detailed report of an in vitro reactivity difference between VOSO4 and BMOV may have bearing on the form of active vanadium metabolites delivered to target tissues. Albumin binding of vanadium chelates is seen to have a potentially dramatic effect on pharmacokinetics, transport, and efficacy of these antidiabetic chelates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The safe clinical use of phenytoin (PHT) is compromised by a drug hypersensitivity reaction, hypothesized to be due to bioactivation of the drug to a protein-reactive metabolite. Previous studies have shown PHT is metabolized to the primary phenol metabolite, HPPH, then converted to a catechol which then autoxidizes to produce reactive quinone. PHT is known to be metabolized to HPPH by cytochromes P450 (P450s) 2C9 and 2C19 and then to the catechol by P450s 2C9, 2C19, 3A4, 3A5, and 3A7. However, the role of many poorly expressed or extrahepatic P450s in the metabolism and/or bioactivation of PHT is not known. The aim of this study was to assess the ability of other human P450s to catalyze PHT metabolism. P450 2C18 catalyzed the primary hydroxylation of PHT with a k(cat) (2.46 +/- 0.09 min(-1)) more than an order of magnitude higher than that of P450 2C9 (0.051 +/- 0.004 min(-1)) and P450 2C19 (0.054 +/- 0.002 min(-1)) and K-m (45 +/- 5 mu M) slightly greater than those of P450 2C9 (12 +/- 4 mu M) and P450 2C19 (29 +/- 4 mu M). P450 2C18 also efficiently catalyzed the secondary hydroxylation of PHT as well as covalent drug-protein adduct formation from both PHT and HPPH in vitro. While P450 2C18 is expressed poorly in the liver, significant expression has been reported in the skin. Thus, P450 2C18 may be important for the extrahepatic tissue-specific bioactivation of PHT in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modification of proteins by reactive ethanol metabolites has been known for some time to occur in the liver, the main site of ethanol metabolism. In more recent studies of laboratory animals, similar modifications have been detected in organs with lesser ability to metabolize ethanol, such as skeletal and cardiac muscle and brain. Such modification may alter protein function or form a neoantigen, making it a target for immune attack. We now report an analysis of protein modification derived from ethanol metabolites in human brain tissue by ELISA using adduct-specific antibodies. We obtained autopsy cerebellum samples from 10 alcoholic cerebellar degeneration cases and 10 matched controls under informed written consent from the next of kin and clearance from the UQ Human Ethics Committee. Elevated levels of protein modifications derived from acetaldehyde (unreduced-acetaldehyde and acetaldehyde-advanced glycation end-product adducts), from malondialdehyde (malondialdehyde adducts) and from combined adducts (malondialdehydeacetaldehyde (MAA) adducts) were detected in alcoholic cerebellar degeneration samples when compared to controls. Other adduct types found in liver samples, such as reduced-acetaldehyde and those derived from hydroxyethyl radicals, were not detected in brain samples. This may reflect the different routes of ethanol metabolism in the two tissues. This is the first report of elevated protein modification in alcoholic cerebellar degeneration, and suggests that such modification may play a role in the pathogenesis of brain injury. Supported by NIAAA under grant NIH AA12404 and the NHMRC (Australia) under grant #981723.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxidative DNA damage is postulated to be involved in carcinogenesis, and as a consequence, dietary antioxidants have received much interest. A recent report indicates that vitamin C facilitates the decomposition of hydroperoxides in vitro, generating reactive aldehydes. We present evidence for the in vivo generation of glyoxal, an established product of lipid peroxidation, glucose/ascorbate autoxidation, or free radical attack of deoxyribose, following supplementation of volunteers with 400 mg/d vitamin C. Utilizing a monoclonal antibody to a deoxycytidine-glyoxal adduct (gdC), we measured DNA lesion levels in peripheral blood mononuclear cells. Supplementation resulted in significant (p = .001) increases in gdC levels at weeks 11, 16, and 21, with corresponding increases in plasma malondialdehyde levels and, coupled with previous findings, is strongly suggestive of a pro-oxidative effect. However, continued supplementation revealed a highly significant (p = .0001) reduction in gdC levels. Simultaneous analysis of cyclobutane thymine dimers revealed no increase upon supplementation but, as with gdC, levels decreased. Although no single mechanism is identified, our data demonstrate a pro-oxidant event in the generation of reactive aldehydes following vitamin C supplementation in vivo. These results are also consistent with our hypothesis for a role of vitamin C in an adaptive/repair response and indicate that nucleotide excision repair specifically may be affected. © 2003 Elsevier Science Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oxidation of bis(p-ethoxyphenyl) ditelluride by hydrogen peroxide has been studied kinetically. The reaction monitored was an oxidation from tellurium(I) to tellurium(II). The reaction stoichiometry ratio was found to depend upon the initial reagent concentrations. The presence of dioxygen was found to retard the rate and attributed to a dioxygen-ditelluride adduct. The rate varies in the following order of different atmospheres N2> Air> > O2. The final product obtained from the oxidation has been characterised by IR, NMR and ESR spectroscopy. A mechanism for the oxidation has been suggested. The reduction of p-EtOPhTeCl3 by the hydrazinium ion has been studied kinetically. The stoichiometric measurements show that four moles p-EtOPhTeCl3 are equivalent to three moles hydrazinium ion. The kinetics were studied under pseudo first order conditions. No ammonia was detected as a nitrogen containing product. The reduction proceeds via a two-electron process which indicates that it is inner-sphere in nature. A mechanism for the reduction is suggested. The solvolysis of p-EtOPhTeCl3 by methanol in benzene/methanol media has been studied. The study shows that the solvolysis is a reversible, acid catalysed reaction. Replacement of the chlorides on tellurium by methanol is agreed to be associative and replacement of the first chloride is rate determining. The rate of solvolysis varies in the order trichloride > tribromide > triiodide. A mechanism for the solvolysis is suggested. The synthesis of some tellurium heterocyclics is reported. The synthesis and characterisation of telluranthrene is reported. The attempted synthesis of telluraxanthene was unsuccessful.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The kinetics and mechanisms of the ring-opening polymerization of oxetane were studied using cationic and coordinated anionic catalysts. The cationic initiators used were BF30Et2!/ethanol, BF30Et2!/ethanediol and BF30Et2/propantriol. Kinetic determinations with the BF30Et2/diol system indicated that a 1: 1 BF3:0H ratio gave the maximum rate of polymerization and this ratio was employed to detenmne the overall rates of polymerization. An overall second-order dependence was obtained when the system involved ethanediol or propantriol as co-catalyst and a 3/2-order dependence with ethanol, in each case the monomer gave a first-order relationship. This suggested that two mechanisms accounted for the cationic polymerization. These mechanisms were investigated and further evidence for these was obtained from the study of the complex formation of BF30Et2 and the co-catalysts by 1H NMR. Molecular weight studies (using size-exclusion chromatography) indicated that the hydroxyl ion acted as a chain transfer reagent when the [OH] > [BF3]. A linear relationship was observed when the number average molecular weight was plotted against [oxetane] at constant [BF3:0H], and similarly a linear dependency was observed on the BF3:0H 1:1 adduct at constant oxetane concentration. Copolymerization of oxetane and THF was carried out using BF30Et2/ethanol system. The reactivity ratios were calculated as rOXT = 1.2 ± 0.30 and rTHF = 0.14 ± 0.03. These copolymers were random copolymers with no evidence of oligomer formation. The coordinated anionic catalyst, porphinato-aluminium chloride [(TPP)AICl], was used to produce a living polymerization of oxetane. An overall third-order kinetics was obtained, with a second-order with respect to the [(TPP)AICl] and a first-order with respect to the [oxetane] and a mechanism was postulated using these results. The stereochemistry of [(TPP)AlCl] catalyst was investigated using cyclohexene and cyclopentene oxide monomers, using extensive 1H NMR, 2-D COSY and decoupling NMR techniques it was concluded that [(TPP)AlCl] gave rise to stereoregular polymers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein lipoxidation refers to the modification by electrophilic lipid oxidation products to form covalent adducts, which for many years has been considered as a deleterious consequence of oxidative stress. Oxidized lipids or phospholipids containing carbonyl moieties react readily with lysine to form Schiff bases; alternatively, oxidation products containing α,β-unsaturated moieties are susceptible to nucleophilic attack by cysteine, histidine or lysine residues to yield Michael adducts, overall corresponding to a large number of possible protein adducts. The most common detection methods for lipoxidized proteins take advantage of the presence of reactive carbonyl groups to add labels, or use antibodies. These methods have limitations in terms of specificity and identification of the modification site. The latter question is satisfactorily addressed by mass spectrometry, which enables the characterization of the adduct structure. This has allowed the identification of lipoxidized proteins in physiological and pathological situations. While in many cases lipoxidation interferes with protein function, causing inhibition of enzymatic activity and increased immunogenicity, there are a small number of cases where lipoxidation results in gain of function or activity. For certain proteins lipoxidation may represent a form of redox signaling, although more work is required to confirm the physiological relevance and mechanisms of such processes. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine. © 2013 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is increasing evidence that non-enzymatic post-translational protein modifications might play key roles in various diseases. These protein modifications can be caused by free radicals generated during oxidative stress or by their products generated during lipid peroxidation. 4-Hydroxynonenal (HNE), a major biomarker of oxidative stress and lipid peroxidation, has been recognized as important molecule in pathology as well as in physiology of living organisms. Therefore, its detection and quantification can be considered as valuable tool for evaluating various pathophysiological conditions.The HNE-protein adduct ELISA is a method to detect HNE bound to proteins, which is considered as the most likely form of HNE occurrence in living systems. Since the earlier described ELISA has been validated for cell lysates and the antibody used for detection of HNE-protein adducts is non-commercial, the aim of this work was to adapt the ELISA to a commercial antibody and to apply it in the analysis of human plasma samples.After modification and validation of the protocol for both antibodies, samples of two groups were analyzed: apparently healthy obese (n=62) and non-obese controls (n=15). Although the detected absolute values of HNE-protein adducts were different, depending on the antibody used, both ELISA methods showed significantly higher values of HNE-protein adducts in the obese group. © 2013 The Authors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enzymatic and non-enzymatic lipid metabolism can give rise to reactive species that may covalently modify cellular or plasma proteins through a process known as lipoxidation. Under basal conditions, protein lipoxidation can contribute to normal cell homeostasis and participate in signaling or adaptive mechanisms, as exemplified by lipoxidation of Ras proteins or of the cytoskeletal protein vimentin, both of which behave as sensors of electrophilic species. Nevertheless, increased lipoxidation under pathological conditions may lead to deleterious effects on protein structure or aggregation. This can result in impaired degradation and accumulation of abnormally folded proteins contributing to pathophysiology, as may occur in neurodegenerative diseases. Identification of the protein targets of lipoxidation and its functional consequences under pathophysiological situations can unveil the modification patterns associated with the various outcomes, as well as preventive strategies or potential therapeutic targets. Given the wide structural variability of lipid moieties involved in lipoxidation, highly sensitive and specific methods for its detection are required. Derivatization of reactive carbonyl species is instrumental in the detection of adducts retaining carbonyl groups. In addition, use of tagged derivatives of electrophilic lipids enables enrichment of lipoxidized proteins or peptides. Ultimate confirmation of lipoxidation requires high resolution mass spectrometry approaches to unequivocally identify the adduct and the targeted residue. Moreover, rigorous validation of the targets identified and assessment of the functional consequences of these modifications are essential. Here we present an update on methods to approach the complex field of lipoxidation along with validation strategies and functional assays illustrated with well-studied lipoxidation targets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Findings on growth regulating activities of the end-product of lipid peroxidation 4-hydroxy-2-nonenal (HNE), which acts as a “second messenger of free radicals”, overlapped with the development of antibodies specific for the aldehyde-protein adducts. These led to qualitative immunochemical determinations of the HNE presence in various pathophysiological processes and to the change of consideration of the aldehyde’s bioactivities from toxicity into cell signalling. Moreover, findings of the HNE-protein adduct in various organs under physiological circumstances support the concept of “oxidative homeostasis”, which implies that oxidative stress and lipid peroxidation are not only pathological but also physiological processes. Reactive aldehydes, at least HNE, could play important role in oxidative homeostasis, while complementary research approaches might reveal the relevance of the aldehydic-protein adducts as major biomarkers of oxidative stress, lipid peroxidation and oxidative homeostasis. Aiming to join efforts in such research activities researchers interacting through the International 4-Hydroxynonenal Club acting within the SFRR-International and through networking projects of the system of the European Cooperation in Science and Technology (COST) carried validation of the methods for lipid peroxidation and further developed the genuine 4-HNE-His ELISA founding quantitative and qualitative methods for detection of 4-HNE-His adducts as valuable tool to study oxidative stress and lipid peroxidation in cell cultures, various organs and tissues and eventually for human plasma and serum analyses [1]. Reference: 1. Weber, Daniela. Lidija, Milkovic. Measurement of HNE-protein adducts in human plasma and serum by ELISA—Comparison of two primary antibodies. Redox Biol. 2013. 226-233.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

I. The target molecules are classified as 1-aryl 2-cyclopropyl substituted ethylene. In the ground state, these molecules have a number of conformers, which are in equilibrium through rotation about single bonds. Once excited, the conformers have fixed conformation and are no longer in equilibrium and can be distinguished by their UV-vis as well as fluorescence spectra. The synthetic strategy involves standard steps. Both 2-methylanthracene and 2-methylnaphthalene were brominated using N-bromosuccinimide to give the bromomethyl adduct, which then was reacted with triphenylphosphine to form the phosphonium salt. This was followed by the formation of the phosphorus ylide, which upon treatment with cyclopropanecarboxaldehyde gave the product.^ II. The degradation of three aliphatic haloethers: bis-(2-chloroethyl) ether, bis-(2-chloroisopropyl) ether, and bis-(2-chloroethoxy)methane and two aromatic haloethers: 4-chlorodiphenyl ether and 4-bromodiphenyl ether was studied. Product studies have been conducted on the titanium dioxide photocatalysis of these compounds including mass balance, monitoring and identifying intermediates to establish the reaction pathways to deduce a mechanism for their degradation. The extent of mineralization was determined from the measurement of halogen anion (Cl$\sp-$/Br$\sp-$) as well as total organic carbon. The relative rates of disappearance of the individual haloethers appear to be related to the hydrophobic character of the given compound. Reaction mechanisms involving hydroxyl radical are proposed to explain the observed results. ^