930 resultados para ACTIVE-SITE MOVEMENT


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study several parameters critical to the success of cryopreserving Sydney rock oyster (Saccostrea glomerata) larvae were investigated. They were: (1) cryoprotectants (10% dimethyl sulfoxide and 10% propylene glycol). (2) freezing protocols (with or without the seeding step). (3) larval concentrations (1,000, 3,000, 5,000, 10,000, 30,000 individuals mL(-1)). and (4) larval ages (6, 12, 24, 48 and 96 h old). The survival rates were determined as percentages of postthaw larvae performing active movements for the 6 and 12 h larvae or active cilia movement for the 24, 48 and 96 h larvae. Analyses showed that the difference in survival rates between different age classses was significant in all the experiments conducted, with the maximum survival rate being achieved in the 24-h-old larvae the postthaw survival rates of larvae cryopreserved with 10% dimethyl sulfoxide (93.1 +/- 0.2%) were significantly higher (P < 0.001) that those with 10% propylene glycol (81.5 +/- 0.4%). Differences in postthaw survival rates between different concentrations (1,000 30,000 individuals mL(-1)) were not significant within each of the three larval age classes (6-, 12-, and 24-h-old ) used.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The titanium species existing in titanium silicalite TS-1, which is prepared by hydrothermal method, were investigated using chemical analysis, XRD, FT-IR, Si-29 MAS NMR, UV-VIS, ESR. It has been observed that several kinds of titanium species may exist in titanium silicalite. The form that titanium atoms incorporate into the framework of titanium silicalite synthesized using tetrapropylammonium bromide (TPABr) as template differs from that using the classical method. But, the symmetry of titanium silicalite, changes from monoclinic to orthorhombic with the increase of titanium content in both methods. The Ti-O-2(-) originated from framework titanium and H2O2 has the moderate stability and may be active site in oxidation reaction. TS-1 synthesized using TPABr as template does not contain anatase, but contains a kind of partly condensed titanium species with six-fold coordination. The titanium species may correspond to 270-280 mn band in UV-VIS spectra and also can form Ti-O-2(-). But, this kind of Ti-O-2(-) is very stable and cannot be catalytic active site. So, the six-fold coordination titanium species may be inactive in both the oxidation reaction and the decomposition of H2O2. The hypothesis has been further proved by the phenomena that the titanium species is easily washed off using acid, and acid treating will not influence the catalytic performance of TS-1. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

CO hydrogenation to light alkenes was carried out on manganese promoted iron catalysts prepared by coprecipitation and sol-gel techniques. Addition of manganese in the range of 1-4 mol.% by means of coprecipitation could improve notably the percentage of C-2 (=) similar to C-4 (=) in the products, but it was not so efficient when the sol-gel method was employed. XRD and H-2-TPR measurements showed that the catalyst samples giving high C-2 (=) similar to C-4 (=) yields possessed ultra. ne particles in the form of pure alpha-(Fe1-xMnx)(2)O-3, and high quality in lowering the reduction temperature of the iron oxide. Furthermore, these samples displayed deep extent of carburization and different surface procedures to the others in the tests of Temperature Programmed Surface Carburization (TPSC). The different surface procedures of these samples were considered to have close relationship with the evolving of surface oxygen. It was also suggested that for the catalysts with high C-2 (=) similar to C-4 (=) yields, the turnover rate of the active site could be kept at a relatively high level due to the improved reducing and carburizing capabilities. Consequently, there would be a large number of sites for CO adsorption/dissociation and an enhanced carburization environment on the catalyst surface, so that the process of hydrogenation could be suppressed relatively to a low level. As a result, the percentage of the light alkenes in the products could be raised.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nowadays, classical (bio)remediation processes are affected by some economical and environmental drawbacks. These approaches often seem to be inadequate, particularly in the perspective of sustainable green processes. Since immobilized metalloporphines can emulate the active site of peroxidases and peroxygenases, their use in several bioremediation processes has been analyzed in this work. The described catalytic reactions use bioinspired, homogenized or heterogenized, commercial porphines and showed a remarkable ability to catalyze substrates oxidation at the expenses of different oxidants such as Oxone and hydrogen peroxide. The biomimetic catalysts have been also investigated about their peroxidase- and peroxygenase-like catalysis and ability to emulate lignolytic peroxidases action and substrate specificity. The adducts showed a remarkable ability to catalyze veratryl alcohol (widely recognized as a simple model compound of lignin) oxidation at the expenses of H2O2. In the perspective of broadening industrial applications of the described catalysts, the oxidation of several pollutants such as durable textile dyes and inorganic sulfides, has been attempted with quite promising results, and some findings open the way toward industrial scaling-up. Accordingly, the inexpensiveness of the synthesis and the mild operational conditions allow these adducts to be proposed as applicable catalysts also for industrial large-scale processes. Besides, these synthetic models are helpful also to understand the behavior of pharmaceuticals, antifungal drugs in this case, in the environment, and to predict the drug metabolism by cytochromes P450. The biomimetic catalysts, for the studied cases, also proved to be much more efficient than the corresponding enzymes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The attachment of a sugar to a hydrophobic polyisoprenyl carrier is the first step for all extracellular glycosylation processes. The enzymes that perform these reactions, polyisoprenyl-glycosyltransferases (PI-GTs) include dolichol phosphate mannose synthase (DPMS), which generates the mannose donor for glycosylation in the endoplasmic reticulum. Here we report the 3.0 Å resolution crystal structure of GtrB, a glucose-specific PI-GT from Synechocystis, showing a tetramer in which each protomer contributes two helices to a membrane-spanning bundle. The active site is 15 Å from the membrane, raising the question of how water-soluble and membrane-embedded substrates are brought into apposition for catalysis. A conserved juxtamembrane domain harbours disease mutations, which compromised activity in GtrB in vitro and in human DPM1 tested in zebrafish. We hypothesize a role of this domain in shielding the polyisoprenyl-phosphate for transport to the active site. Our results reveal the basis of PI-GT function, and provide a potential molecular explanation for DPM1-related disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The secondary structure of the trimeric protein 4-chlorobenzoyl coenzyme A dehalogenase from Arthrobacter sp. strain TM-1, the second of three enzymes involved in the dechlorination of 4-chlorobenzoate to form 4-hydroxybenzoate, has been examined. E(mM) for the enzyme was 12.59. Analysis by circular dichroism spectrometry in the far uv indicated that 4-chlorobenzoyl coenzyme A dehalogenase was composed mostly of alpha-helix (56%) with lesser amounts of random coil (21%), beta-turn (13%) and beta-sheet (9%). These data are in close agreement with a computational prediction of secondary structure from the primary amino acid sequence, which indicated 55.8% alpha-helix, 33.7% random coil and 10.5% beta-sheet; the enzyme is, therefore, similar to the 4-chlorobenzoyl coenzyme A dehalogenase from Pseudomonas sp. CBS-3. The three-dimensional structure, including that of the presumed active site, predicted by computational analysis, is also closely similar to that of the Pseudomonas dehalogenase. Study of the stability and physicochemical properties revealed that at room temperature, the enzyme was stable for 24 h but was completely inactivated by heating to 60 degrees C for 5 min; thereafter by cooling at 1 degrees C min(-1) to 45 degrees C, 20.6% of the activity could be recovered. Mildly acidic (pH 5.2) or alkaline (pH 10.1) conditions caused complete inactivation, but activity was fully recovered on returning the enzyme to pH 7.4. Circular dichroism studies also indicated that secondary structure was little altered by heating to 60 degrees C, or by changing the pH from 7.4 to 6.0 or 9.2. Complete, irreversible destruction of, and maximal decrease in the fluorescence yield of the protein at 330-350 nm were brought about by 4.5 M urea or 1.1 M guanidinium chloride. Evidence was obtained to support the hypothetical three-dimensional model, that residues W140 and W167 are buried in a non-polar environment, whereas W182 appears at or close to the surface of the protein. At least one of the enzymes of the dehalogenase system (the combined 4-chlorobenzoate:CoA ligase, the dehalogenase and 4-hydroxybenzoyl coenzyme A thioesterase) appears to be capable of association with the cell membrane.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Manganese (Mn) is a required element for oceanic phytoplankton as it plays a critical role in photosynthesis, through its unique redox chemistry, as the active site in photosystem II, and in enzymes that act as defenses against reactive oxygen species (ROS), most notably for protection against superoxide (O2?), through the action of superoxide dismutase (SOD), and against hydrogen peroxide (H2O2) via peroxidases and catalases. The distribution and redox speciation of Mn in the ocean is also apparently controlled by reactions with ROS. Here we examine the connections between ROS and dissolved Mn species in the upper ocean using field and laboratory experimental data. Our results suggest it is unlikely that significant concentrations of Mn(III) are produced in the euphotic zone, as in the absence of evidence for the existence of strong Mn(III) ligands, Mn(II) reacts with O2? to form the short-lived transient manganous superoxide, MnO2+, which may react rapidly with other redox species in a manner similar to O2?. Experiments with the strong Mn(III) chelator, desferrioxamine B (DFB), in seawater indicated that the Mn(III) species are unlikely to form, as formation of the precursor Mn(II) complex is hindered due to the stability of the Ca complex with DFB.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

While protein tyrosine kinases (PTKs) have been extensively characterized in eukaryotes, far less is known about their emerging counterparts in prokaryotes. Studies of close to 20 homologs of bacterial protein tyrosine (BY) kinases have inaugurated a blooming new field of research, all since just the end of the last decade. These kinases are key regulators in the polymerization and exportation of the virulence-determining polysaccharides which shield the bacterial from the non-specific defenses of the host. This research is aimed at furthering our understanding of the BY kinases through the use of X-ray crystallography and various in vitro and in vivo experiments. We reported the first crystal structure of a bacterial PTK, the C-terminal kinase domain of E. coli tyrosine kinase (Etk) at 2.5Å resolution. The fold of the Etk kinase domain differs markedly from that of eukaryotic PTKs. Based on the observed structure and supporting evidences, we proposed a unique activation mechanism for BY kinases in Gram-negative bacteria. The phosphorylation of tyrosine residue Y574 at the active site and the specific interaction of P-Y574 with a previously unidentified key arginine residue, R614, unblock the Etk active site and activate the kinase. Both in vitro kinase activity and in vivo antibiotics resistance studies utilizing structure-guided mutants further support the novel activation mechanism. In addition, the level of phosphorylation of their C-terminal Tyr cluster is known to regulate the translocation of extracellular polysaccharides. Our studies have significantly clarified our understanding of how the phosphorylation status on the C-terminal tyrosine cluster of BY kinases affects the oligomerization state of the protein, which is likely the machinery of polysaccharide export regulation. In summary, this research makes a substantial contribution to the rapidly progressing research of bacterial tyrosine kinases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Kinesins are molecular motors that transport intracellular cargos along microtubules (MTs) and influence the organization and dynamics of the MT cytoskeleton. Their force-generating functions arise from conformational changes in their motor domain as ATP is bound and hydrolyzed, and products are released. In the budding yeast Saccharomyces cerevisiae, the Kar3 kinesin forms heterodimers with one of two non-catalytic kinesin-like proteins, Cik1 and Vik1, which lack the ability to bind ATP, and yet they retain the capacity to bind MTs. Cik1 and Vik1 also influence and respond to the MT-binding and nucleotide states of Kar3, and differentially regulate the functions of Kar3 during yeast mating and mitosis. The mechanism by which Kar3/Cik1 and Kar3/Vik1 dimers operate remains unknown, but has important implications for understanding mechanical coordination between subunits of motor complexes that traverse cytoskeletal tracks. In this study, we show that the opportunistic human fungal pathogen Candida albicans (Ca) harbors a single version of this unique form of heterodimeric kinesin and we present the first in vitro characterization of this motor. Like its budding yeast counterpart, the Vik1-like subunit binds directly to MTs and strengthens the MT-binding affinity of the heterodimer. However, in contrast to ScKar3/Cik1 and ScKar3/Vik1, CaKar3/Vik1 exhibits weaker overall MT-binding affinity and lower ATPase activity. Preliminary investigations using a multiple motor motility assay indicate CaKar3/Vik1 may not be motile. Using a maltose binding protein tagging system, we determined the X-ray crystal structure of the CaKar3 motor domain and observed notable differences in its nucleotide-binding pocket relative to ScKar3 that appear to represent a previously unobserved state of the active site. Together, these studies broaden our knowledge of novel kinesin motor assemblies and shed new light on structurally dynamic regions of Kar3/Vik1-like motor complexes that help mediate mechanical coordination of its subunits.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coronaviruses are important pathogens that cause acute respiratory diseases in humans. Replication of the 30-kb positive-strand RNA genome of coronaviruses and discontinuous synthesis of an extensive set of subgenome-length RNAs (transcription) are mediated by the replicase-transcriptase, a barely characterized protein complex that comprises several cellular proteins and up to 16 viral subunits. The coronavirus replicase-transcriptase was recently predicted to contain RNA-processing enzymes that are extremely rare or absent in other RNA viruses. Here, we established and characterized the activity of one of these enzymes, replicative nidoviral uridylate-specific endoribonuclease (NendoU). It is considered a major genetic marker that discriminates nidoviruses (Coronaviridae, Arteriviridae, and Roniviridae) from all other RNA virus families. Bacterially expressed forms of NendoU of severe acute respiratory syndrome coronavirus and human coronavirus 229E were revealed to cleave single-stranded and double-stranded RNA in a Mn2+-dependent manner. Single-stranded RNA was cleaved less specifically and effectively, suggesting that double-stranded RNA is the biologically relevant NendoU substrate. Double-stranded RNA substrates were cleaved upstream and downstream of uridylates at GUU or GU sequences to produce molecules with 2'-3' cyclic phosphate ends. 2'-O-ribose-methylated RNA substrates proved to be resistant to cleavage by NendoU, indicating a functional link with the 2'-O-ribose methyltransferase located adjacent to NendoU in the coronavirus replicative polyprotein. A mutagenesis study verified potential active-site residues and allowed us to inactivate NendoU in the full-length human coronavirus 229E clone. Substitution of D6408 by Ala was shown to abolish viral RNA synthesis, demonstrating that NendoU has critical functions in viral replication and transcription.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Severe acute respiratory syndrome coronavirus (SARS-CoV), a newly identified group 2 coronavirus, is the causative agent of severe acute respiratory syndrome, a life-threatening form of pneumonia in humans. Coronavirus replication and transcription are highly specialized processes of cytoplasmic RNA synthesis that localize to virus-induced membrane structures and were recently proposed to involve a complex enzymatic machinery that, besides RNA-dependent RNA polymerase, helicase, and protease activities, also involves a series of RNA-processing enzymes that are not found in most other RNA virus families. Here, we characterized the enzymatic activities of a recombinant form of the SARS-CoV helicase (nonstructural protein [nsp] 13), a superfamily 1 helicase with an N-terminal zinc-binding domain. We report that nsp13 has both RNA and DNA duplex-unwinding activities. SARS-CoV nsp13 unwinds its substrates in a 5'-to-3' direction and features a remarkable processivity, allowing efficient strand separation of extended regions of double-stranded RNA and DNA. Characterization of the nsp13-associated (deoxy)nucleoside triphosphatase ([dNTPase) activities revealed that all natural nucleotides and deoxynucleotides are substrates of nsp13, with ATP, dATP, and GTP being hydrolyzed slightly more efficiently than other nucleotides. Furthermore, we established an RNA 5'-triphosphatase activity for the SARS-CoV nsp13 helicase which may be involved in the formation of the 5' cap structure of viral RNAs. The data suggest that the (d)NTPase and RNA 5'-triphosphatase activities of nsp13 have a common active site. Finally, we established that, in SARS-CoV-infected Vero E6 cells, nsp13 localizes to membranes that appear to be derived from the endoplasmic reticulum and are the likely site of SARS-CoV RNA synthesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Replication of the giant RNA genome of severe acute respiratory syndrome (SARS) coronavirus (CoV) and synthesis of as many as eight subgenomic (sg) mRNAs are mediated by a viral replicase-transcriptase of outstanding complexity that includes an essential endoribonuclease activity. Here, we show that the CoV replicative machinery, unlike that of other RNA viruses, also uses an exoribonuclease (ExoN) activity, which is associated with nonstructural protein (nsp) 14. Bacterially expressed forms of SARS-CoV nsp14 were shown to act on both ssRNAs and dsRNAs in a 3'5' direction. The activity depended on residues that are conserved in the DEDD exonuclease superfamily. The protein did not hydrolyze DNA or ribose-2'-O-methylated RNA substrates and required divalent metal ions for activity. A range of 5'-labeled ssRNA substrates were processed to final products of 8–12 nucleotides. When part of dsRNA or in the presence of nonlabeled dsRNA, the 5'-labeled RNA substrates were processed to significantly smaller products, indicating that binding to dsRNA in cis or trans modulates the exonucleolytic activity of nsp14. Characterization of human CoV 229E ExoN active-site mutants revealed severe defects in viral RNA synthesis, and no viable virus could be recovered. Besides strongly reduced genome replication, specific defects in sg RNA synthesis, such as aberrant sizes of specific sg RNAs and changes in the molar ratios between individual sg RNA species, were observed. Taken together, the study identifies an RNA virus ExoN activity that is involved in the synthesis of multiple RNAs from the exceptionally large genomic RNA templates of CoVs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study, we report on the synthesis, kinetic characterisation, and application of a novel biotinylated and active site-directed inactivator of dipeptidyl peptidase IV (DPP-IV). Thus, the dipeptide-derived proline diphenyl phosphonate NH(2)-Glu(biotinyl-PEG)-Pro(P)(OPh)(2) has been prepared by a combination of classical solution- and solid-phase methodologies and has been shown to be an irreversible inhibitor of porcine DPP-IV, exhibiting an over all second-order rate constant (k(i)/K(i)) for inhibition of 1.57 x 10(3) M(-1) min(-1). This value compares favourably with previously reported rates of inactivation of DPP-IV by dipeptides containing a P(1) proline diphenyl phosphonate grouping [B. Boduszek, J. Oleksyszyn, C.M. Kam, J. Selzler, R.E. Smith, J.C. Powers, Dipeptide phophonates as inhibitors of dipeptidyl peptidase IV, J. Med. Chem. 37 (1994) 3969-3976; B.F. Gilmore, J.F. Lynas, C.J. Scott, C. McGoohan, L. Martin, B. Walker, Dipeptide proline diphenyl phosphonates are potent, irreversible inhibitors of seprase (FAPalpha), Biochem, Biophys. Res. Commun. 346 (2006) 436-446.], thus demonstrating that the incorporation of the side-chain modified (N-biotinyl-3-(2-(2-(3-aminopropyloxy)-ethoxy)-ethoxy)-propyl) glutamic acid residue at the P(2) position is compatible with inhibitor efficacy. The utilisation of this probe for the detection of both purified dipeptidyl peptidase IV and the disclosure of a dipeptidyl peptidase IV-like activity from a clinical isolate of Porphyromonas gingivalis, using established electrophoretic and Western blotting techniques previously developed by our group, is also demonstrated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The secretion and activation of the major cathepsin L1 cysteine protease involved in the virulence of the helminth pathogen Fasciola hepatica was investigated. Only the fully processed and active mature enzyme can be detected in medium in which adult F. hepatica are cultured. However, immunocytochemical studies revealed that the inactive procathepsin L1 is packaged in secretory vesicles of epithelial cells that line the parasite gut. These observations suggest that processing and activation of procathepsin L1 occurs following secretion from these cells into the acidic gut lumen. Expression of the 37-kDa procathepsin L1 in Pichia pastoris showed that an intermolecular processing event within a conserved GXNXFXD motif in the propeptide generates an active 30-kDa intermediate form. Further activation of the enzyme was initiated by decreasing the pH to 5.0 and involved the progressive processing of the 37 and 30-kDa forms to other intermediates and finally to a fully mature 24.5 kDa cathepsin L with an additional 1 or 2 amino acids. An active site mutant procathepsin L, constructed by replacing the Cys26 with Gly26, failed to autoprocess. However, [Gly26]procathepsin L was processed by exogenous wild-type cathepsin L to a mature enzyme plus 10 amino acids attached to the N terminus. This exogenous processing occurred without the formation of a 30-kDa intermediate form. The results indicate that activation of procathepsin L1 by removal of the propeptide can occur by different pathways, and that this takes place within the parasite gut where the protease functions in food digestion and from where it is liberated as an active enzyme for additional extracorporeal roles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phosphonopyruvate (P-pyr) hydrolase (PPH), a member of the phosphoenolpyruvate (PEP) mutase/isocitrate lyase (PEPM/ICL) superfamily, hydrolyzes P-pyr and shares the highest sequence identity and functional similarity with PEPM. Recombinant PPH from Variovorax sp. Pal2 was expressed in Escherichia coli and purified to homogeneity. Analytical gel filtration indicated that the protein exists in solution predominantly as a tetramer. The PPH pH rate profile indicates maximal activity over a broad pH range.The steady-state kinetic constants determined for a rapid equilibrium ordered kinetic mechanism with Mg+2 binding first (Kd =140 ± 40 M), are kcat = 105 ± 2 s-1 and P-pyr Km = 5 ± 1 M. PEP (slow substrate kcat = 2 × 10-4 s-1), oxalate, and sulfopyruvate are competitive inhibitors with Ki values of 2.0 ± 0.1 mM, 17 ± 1 M, and 210 ± 10 M, respectively. Three PPH crystal structures have been determined, that of a ligand-free enzyme, the enzyme bound to Mg2+ and oxalate (inhibitor), and the enzyme bound to Mg2+ and P-pyr (substrate). The complex with the inhibitor was obtained by cocrystallization, whereas that with the substrate was obtained by briefly soaking crystals of the ligand-free enzyme with P-pyr prior to flash cooling. The PPH structure resembles that of the other members of the PEPM/ICL superfamily and is most similar to the functionally related enzyme, PEPM. Each monomer of the dimer of dimers exhibits an (/)8 barrel fold with the eighth helix swapped between two molecules of the dimer. Both P-pyr and oxalate are anchored to the active site by Mg2+. The loop capping the active site is disordered in all three structures, in contrast to PEPM, where the equivalent loop adopts an open or disordered conformation in the unbound state but sequesters the inhibitor from solvent in the bound state. Crystal packing may have favored the open conformation of PPH even when the enzyme was cocrystallized with the oxalate inhibitor. Structure alignment of PPH with other superfamily members revealed two pairs of invariant or conservatively replaced residues that anchor the flexible gating loop. The proposed PPH catalytic mechanism is analogous to that of PEPM but includes activation of a water nucleophile with the loop Thr118 residue.