961 resultados para AB-INITIO BENCHMARK


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work the most abundant trehalose conformers for the isolated molecule as well as for the water solvated system are selected. The theoretical tecniques employed are ab initio calculations in the gas phase and in aqueous solution using the PCM model. A conformational map is built for the glycosidic angles (phi and psi) and the search for the most abundant structures is explained. The final structures are validated by the agreement found between experimental and theoretical values for ³J H,C along the glycosidic linkage.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The first computational implementation that automates the procedures involved in the calculation of infrared intensities using the charge-charge flux-dipole flux model is presented. The atomic charges and dipoles from the Quantum Theory of Atoms in Molecules (QTAIM) model was programmed for Morphy98, Gaussian98 and Gaussian03 programs outputs, but for the ChelpG parameters only the Gaussian programs are supported. Results of illustrative but new calculations for the water, ammonia and methane molecules at the MP2/6-311++G(3d,3p) theoretical level, using the ChelpG and QTAIM/Morphy charges and dipoles are presented. These results showed excellent agreement with analytical results obtained directly at the MP2/6-311++G(3d,3p) level of theory.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present in this educational article a theoretical analysis based on DFT/B3LYP 6-311++G (d,p) and ab initio MP2/6-311++G(d,p) computational calculation about the reactivity and the regioselectivity on the chlorination reaction of anisole, toluene and nitrobenzene, using trichloroisocyanuric acid (TICA) as donor of Cl+. The H.O.M.O. / L.U.M.O. energy and N.B.O. atomic charges of various aromatic systems were calculated in ab initio level. The energies of the reagents and intermediaries were calculated using D.F.T.. These results have been presented as a quantitative example for the S E A mechanism, in the undergraduate organic chemistry disciplines.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Structure and first hyperpolarizability for a series of armchair a(5,5) chemically modified carbon nanotubes (CNT) were calculated at semiempirical and density functional levels of theory. The 4,4´-substituted stilbenes were selected as chromophore with substituents at position 4´ set to X=NO2, H, Cl, OH and NH2. The calculated values for static first hyperpolarizability (β) were almost linearly dependent on the electronic effect of the group X, increasing from NO2 to NH2. At DFT level the effect of inserting the chromophore in the CNT surface was to enhance the β value up to 70% relative to the free 4,4´-substituted stilbene.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Static electric dipole polarizabilities and first hyperpolarizabilites have been calculated for the title molecules and their 3' and 4'-nitro derivatives at ab-initio Hartree- Fock/6-31G(d, p) level. The influence of the pivotal p vacant 3A elements (B, Al or Ga) substitution on the electrical properties of these molecules is detailed. The axial vector components of the first hyperpolarizabilities β(0) of the push-pull 4'-nitro derivatives, -18.2×10-32 esu (B), -21.1×10-32 esu (Al) and -20.8×10-32 esu (Ga) are calculated to be as much as fourfold larger then that calculated for the p-nitroaniline, a reference organic molecule for comparison for this type of molecular property.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gas-phase SiCl3+ ions undergo sequential solvolysis type reactions with water, methanol, ammonia, methylamine and propylene. Studies carried out in a Fourier Transform mass spectrometer reveal that these reactions are facile at 10-8 Torr and give rise to substituted chlorosilyl cations. Ab initio and DFT calculations reveal that these reactions proceed by addition of the silyl cation to the oxygen or nitrogen lone pair followed by a 1,3-H migration in the transition state. These transition states are calculated to lie below the energy of the reactants. By comparison, hydrolysis of gaseous CCl3+ is calculated to involve a substantial positive energy barrier.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hydrogen bond energies of fifteen dimers were calculated using the large basis set 6-311++G(3df,3pd), at Hartree-Fock (HF) level including Møller-Plesset (MP2) calculations. The procedure for obtaining such energies were based on the dimer's energy rise provoked by increasing in intermolecular distance of the system component units. Deviations from a strictly linear hydrogen bond were investigated and rotational barriers were also computed allowing the calculation of the second order attractive interactions. In order to provide a more objective definition of hydrogen bond, a lower energy limit was proposed in place of the merely empirical parameters employed in the classical definition

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Friedelin molecular conformers were obtained by Density Functional Theory (DFT) and by ab initio structure determination from powder X-ray diffraction. Their conformers with the five rings in chair-chair-chair-boat-boat, and with all rings in chair, are energy degenerated in gas-phase according to DFT results. The powder diffraction data reveals that rings A, B and C of friedelin are in chair, and rings D and E in boat-boat, conformation. The high correlation values among powder diffraction data, DFT and reported single-crystal data indicate that the use of conventional X-ray diffractometer can be applied in routine laboratory analysis in the absence of a single-crystal diffractometer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neste trabalho estudamos o espectro da série iso-eletrônica do átomo de hélio utilizando o método hiperesférico adiabático. Este método permite o estudo dos níveis de energia de sistemas atômicos por meio de um conjunto de curvas de potencial, de forma semelhante à aproximação de Born-Oppenheimer para sistemas moleculares. As curvas de potencial são definidas com relação a uma única variável radial, independentemente do número de elétrons do sistema. Desta forma a análise e classificação dos níveis de energia é realizada de forma simples e intuitiva, o que não se observa em métodos como o variacional e Hartree-Fock. O objetivo desta pesquisa é o de descrever o comportamento do estado fundamental de sistemas heliônicos com a variação da carga nuclear. Além do método hiperesférico simplificar muito a análise dos resultados, é um processo ab-initio, cujos erros são limitados apenas pelos truncamentos do número de equações acopladas. Já na sua aproximação mais simples, onde todos os acoplamentos radiais são desprezados, o erro obtido para a energia do estado fundamental é inferior a 1% e com a introdução do acoplamento diagonal o erro cai para cerca de 0.3%. Resultados de grande precisão são obtidos com os acoplamentos não diagonais, atingindo precisões da ordem de 10-3 %.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

By alloying metals with other materials, one can modify the metal’s characteristics or compose an alloy which has certain desired characteristics that no pure metal has. The field is vast and complex, and phenomena that govern the behaviour of alloys are numerous. Theories cannot penetrate such complexity, and the scope of experiments is also limited. This is why the relatively new field of ab initio computational methods has much to give to this field. With these methods, one can extend the understanding given by theories, predict how some systems might behave, and be able to obtain information that is not there to see in physical experiments. This thesis pursues to contribute to the collective knowledge of this field in the light of two cases. The first part examines the oxidation of Ag/Cu, namely, the adsorption dynamics and oxygen induced segregation of the surface. Our results demonstrate that the presence of Ag on the Cu(100) surface layer strongly inhibits dissociative adsorption. Our results also confirmed that surface reconstruction does happen, as experiments predicted. Our studies indicate that 0.25 ML of oxygen is enough for Ag to diffuse towards the bulk, under the copper oxide layer. The other part elucidates the complex interplay of various energy and entropy contributions to the phase stability of paramagnetic duplex steel alloys. We were able to produce a phase stability map from first principles, and it agrees with experiments rather well. Our results also show that entropy contributions play a very important role on defining the phase stability. This is, to the author’s knowledge, the first ab initio study upon this subject.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Diidropirimidinonas são heterociclos com atividade antineoplásica conhecida. O monastrol e alguns análogos são exemplos. A análise conformacional representa uma etapa preliminar importante em estudos que visam correlacionar a estrutura do composto com sua atividade. Neste trabalho, descrevemos a análise conformacional do monastrol e diversos análogos por cálculo semi-empírico AM1 e ab initio HF/6-31G*. Quatro geometrias de equilíbrio foram encontradas (s-cis/ap, s-cis/sp, s-trans/ap e s-trans/sp), tendo como rotações internas importantes a do sistema carbonilado α,β-insaturado e a do grupo arila ligado ao heterociclo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study we discuss the atomic level phenomena on transition metal surfaces. Transition metals are widely used as catalysts in industry. Therefore, reactions occuring on transition metal surfaces have large industrial intrest. This study addresses problems in very small size and time scales, which is an important part in the overall understanding of these phenomena. The publications of this study can be roughly divided into two categories: The adsorption of an O2 molecule to a surface, and surface structures of preadsorbed atoms. These two categories complement each other, because in the realistic case there are always some preadsorbed atoms at the catalytically active surfaces. However, all transition metals have an active d-band, and this study is also a study of the in uence of the active d-band on other atoms. At the rst part of this study we discuss the adsorption and dissociation of an O2 molecule on a clean stepped palladium surface and a smooth palladium surface precovered with sulphur and oxygen atoms. We show how the reactivity of the surface against the oxygen molecule varies due to the geometry of the surface and preadsorbed atoms. We also show how the molecular orbitals of the oxygen molecule evolve when it approaches the di erent sites on the surface. In the second part we discuss the surface structures of transition metal surfaces. We study the structures that are intresting on account of the Rashba e ect and charge density waves. We also study the adsorption of suphur on a gold surface, and surface structures of it. In this study we use ab-initio based density functional theory methods to simulate the results. We also compare the results of our methods to the results obtained with the Low-Energy-Electron-Difraction method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Persistent luminescence materials can store energy from solar radiation or artificial lighting and release it over a period of several hours without a continuous excitation source. These materials are widely used to improve human safety in emergency and traffic signalization. They can also be utilized in novel applications including solar cells, medical diagnostics, radiation detectors and structural damage sensors. The development of these materials is currently based on methods based on trial and error. The tailoring of new materials is also hindered by the lack of knowledge on the role of their intrinsic and extrinsic lattice defects in the appropriate mechanisms. The goal of this work was to clarify the persistent luminescence mechanisms by combining ab initio density functional theory (DFT) calculations with selected experimental methods. The DFT approach enables a full control of both the nature of the defects and their locations in the host lattice. The materials studied in the present work, the distrontium magnesium disilicate (Sr2MgSi2O7) and strontium aluminate (SrAl2O4) are among the most efficient persistent luminescence hosts when doped with divalent europium Eu2+ and co-doped with trivalent rare earth ions R3+ (R: Y, La-Nd, Sm, Gd-Lu). The polycrystalline materials were prepared with the solid state method and their structural and phase purity was confirmed by X-ray powder diffraction. Their local crystal structure was studied by high-resolution transmission electron microscopy. The crystal and electronic structure of the nondoped as well as Eu2+, R2+/3+ and other defect containing materials were studied using DFT calculations. The experimental trap depths were obtained using thermoluminescence (TL) spectroscopy. The emission and excitation of Sr2MgSi2O7:Eu2+,Dy3+ were also studied. Significant modifications in the local crystal structure due to the Eu2+ ion and lattice defects were found by the experimental and DFT methods. The charge compensation effects induced by the R3+ co-doping further increased the number of defects and distortions in the host lattice. As for the electronic structure of Sr2MgSi2O7 and SrAl2O4, the experimental band gap energy of the host materials was well reproduced by the calculations. The DFT calculated Eu2+ and R2+/3+ 4fn as well as 4fn-15d1 ground states in the Sr2MgSi2O7 band structure provide an independent verification for an empirical model which is constructed using rather sparse experimental data for the R3+ and especially the R2+ ions. The intrinsic and defect induced electron traps were found to act together as energy storage sites contributing to the materials’ efficient persistent luminescence. The calculated trap energy range agreed with the trap structure of Sr2MgSi2O7 obtained using TL measurements. More experimental studies should be carried out for SrAl2O4 to compare with the DFT calculations. The calculated and experimental results show that the electron traps created by both the rare earth ions and vacancies are modified due to the defect aggregation and charge compensation effects. The relationships between this modification and the energy storage properties of the solid state materials are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Computational material science with the Density Functional Theory (DFT) has recently gained a method for describing, for the first time the non local bonding i.e., van der Waals (vdW) bonding. The newly proposed van der Waals-Density Functional (vdW-DF) is employed here to address the role of non local interactions in the case of H2 adsorption on Ru(0001) surface. The later vdW-DF2 implementation with the DFT code VASP (Vienna Ab-initio Simulation Package) is used in this study. The motivation for studying H2 adsorption on ruthenium surface arose from the interest to hydrogenation processes. Potential energy surface (PES) plots are created for adsorption sites top, bridge, fcc and hcp, employing the vdW-DF2 functional. The vdW-DF yields 0.1 eV - 0.2 eV higher barriers for the dissociation of the H2 molecule; the vdW-DF seems to bind the H2 molecule more tightly together. Furthermore, at the top site, which is found to be the most reactive, the vdW functional suggests no entrance barrier or in any case smaller than 0.05 eV, whereas the corresponding calculation without the vdW-DF does. Ruthenium and H2 are found to have the opposite behaviors with the vdW-DF; Ru lattice constants are overestimated while H2 bond length is shorter. Also evaluation of the CPU time demand of the vdW-DF2 is done from the PES data. From top to fcc sites the vdW-DF computational time demand is larger by 4.77 % to 20.09 %, while at the hcp site it is slightly smaller. Also the behavior of a few exchange correlation functionals is investigated along addressing the role of vdW-DF. Behavior of the different functionals is not consistent between the Ru lattice constants and H2 bond lengths. It is thus difficult to determine the quality of a particular exchange correlation functional by comparing equilibrium separations of the different elements. By comparing PESs it would be computationally highly consuming.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The structure and optical properties of thin films based on C60 materials are studied. Reproducible vacuum method of thin fullerene films production with Cd impurity on Si, glass and mica surfaces is developed. Surface morphology of the films are investigated by AFM and SEM methods. The ab initio quantum - chemical calculations of the geometry, total energy and excited energy states of complex fullerene- cadmium telluride supramolecules are performed. Photoluminescence spectra of composite thin films based on C60 before and after X-ray irradiation were measured. The intensity of additional peaks is defined as the charge composition due to the type of substrate. These results are interpreted as an appearance of the dipole-allowed transitions in the fullerene excited singlet states spectrum cause of an interference with cadmium telluride. X-ray irradiated films were investigated, and additional peaks in photoluminescence spectra were detected. These peaks appear as a result of molecular complexes formation from C60CdTe mixture and dimerization of the films. Density functional B3LYP quantum-chemical calculations for C60CdTe, molecular complexes, (C60)2 and C120O dimers were performed to elucidate some experimental results.