992 resultados para A. bifilosa c6 f
Resumo:
As part of our continuing organic geochemical studies of sediments recovered by the Deep Sea Drilling Project, we have analyzed the types, amounts, and thermal alteration indices of organic matter in samples collected from the California continental margin on Leg 63. Some of the samples were frozen core; others were canned on site. Canned samples were analyzed for gas content using methods described by Mclver (1972). Our main objective was to see if the changes in surface circulation that had occurred through time off the California coast were reflected in changes in the type and amount of organic matter accumulating on the sea floor.
Resumo:
Ocean Drilling Program (ODP) Leg 164 recovered a number of large solid gas hydrate from Sites 994, 996, and 997 on the Blake Ridge. Sites 994 and 997 samples, either nodular or thick massive pieces, were subjected to laboratory analysis and measurements to determine the structure, molecular and isotopic composition, thermal conductivity, and equilibrium dissociation conditions. X-ray computed tomography (CT) imagery, X-ray diffraction, nuclear magnetic resonance (NMR), and Raman spectroscopy have revealed that the gas hydrates recovered from the Blake Ridge are nearly 100% methane gas hydrate of Structure I, cubic with a lattice constant of a = 11.95 ± 0.05 angström, and a molar ratio of water to gas (hydration number) of 6.2. The d18O of water is 2.67 per mil to 3.51 per mil SMOW, which is 3.5-4.0 heavier than the ambient interstitial waters. The d13C and dD of methane are -66 per mil to -70 per mil and -201 per mil to -206 per mil, respectively, suggesting that the methane was generated through bacterial CO2 reduction. Thermal conductivity values of the Blake Ridge hydrates range from 0.3 to 0.5 W/(m K). Equilibrium dissociation experiments indicate that the three-phase equilibrium for the specimen is 3.27 MPa at 274.7 K. This is almost identical to that of synthetic pure methane hydrate in freshwater.
Resumo:
Small amounts of C1-C8 hydrocarbons were detected in continental rise sediments from DSDP Site 603. Organiccarbon- lean sections contained only C1-C3 compounds believed to have migrated from organic-carbon-rich sections. Heavier (C4-C8) hydrocarbons were found only in organic-carbon-rich sections. Restricted and sporadic distribution of C4-C6 compounds in 0-1100 m sub-bottom sediments suggest low-temperature (<20°C) biological/chemical generation processes. Increased C4-C8 concentrations and complexity, including unusually high levels of xylene, were detected in two deeper Cretaceous sections (603-34-2, 134 cm and 603-81-3, 120 cm). This behavior, which was not observed in 17 other samples from sub-bottom depths greater than 1100 m, is similar to that observed in immature surface sediments from the geothermally active Guaymas Basin (Gulf of California) area.