998 resultados para 550 Earth sciences
A case for a downwasting mountain glacier during Termination I, Verçenik valley,northeastern Turkey
Resumo:
High-resolution and highly precise age models for recent lake sediments (last 100–150 years) are essential for quantitative paleoclimate research. These are particularly important for sedimentological and geochemical proxies, where transfer functions cannot be established and calibration must be based upon the relation of sedimentary records to instrumental data. High-precision dating for the calibration period is most critical as it determines directly the quality of the calibration statistics. Here, as an example, we compare radionuclide age models obtained on two high-elevation glacial lakes in the Central Chilean Andes (Laguna Negra: 33°38′S/70°08′W, 2,680 m a.s.l. and Laguna El Ocho: 34°02′S/70°19′W, 3,250 m a.s.l.). We show the different numerical models that produce accurate age-depth chronologies based on 210Pb profiles, and we explain how to obtain reduced age-error bars at the bottom part of the profiles, i.e., typically around the end of the 19th century. In order to constrain the age models, we propose a method with five steps: (i) sampling at irregularly-spaced intervals for 226Ra, 210Pb and 137Cs depending on the stratigraphy and microfacies, (ii) a systematic comparison of numerical models for the calculation of 210Pb-based age models: constant flux constant sedimentation (CFCS), constant initial concentration (CIC), constant rate of supply (CRS) and sediment isotope tomography (SIT), (iii) numerical constraining of the CRS and SIT models with the 137Cs chronomarker of AD 1964 and, (iv) step-wise cross-validation with independent diagnostic environmental stratigraphic markers of known age (e.g., volcanic ash layer, historical flood and earthquakes). In both examples, we also use airborne pollutants such as spheroidal carbonaceous particles (reflecting the history of fossil fuel emissions), excess atmospheric Cu deposition (reflecting the production history of a large local Cu mine), and turbidites related to historical earthquakes. Our results show that the SIT model constrained with the 137Cs AD 1964 peak performs best over the entire chronological profile (last 100–150 years) and yields the smallest standard deviations for the sediment ages. Such precision is critical for the calibration statistics, and ultimately, for the quality of the quantitative paleoclimate reconstruction. The systematic comparison of CRS and SIT models also helps to validate the robustness of the chronologies in different sections of the profile. Although surprisingly poorly known and under-explored in paleolimnological research, the SIT model has a great potential in paleoclimatological reconstructions based on lake sediments
Resumo:
This review of late-Holocene palaeoclimatology represents the results from a PAGES/CLIVAR Intersection Panel meeting that took place in June 2006. The review is in three parts: the principal high-resolution proxy disciplines (trees, corals, ice cores and documentary evidence), emphasizing current issues in their use for climate reconstruction; the various approaches that have been adopted to combine multiple climate proxy records to provide estimates of past annual-to-decadal timescale Northern Hemisphere surface temperatures and other climate variables, such as large-scale circulation indices; and the forcing histories used in climate model simulations of the past millennium. We discuss the need to develop a framework through which current and new approaches to interpreting these proxy data may be rigorously assessed using pseudo-proxies derived from climate model runs, where the `answer' is known. The article concludes with a list of recommendations. First, more raw proxy data are required from the diverse disciplines and from more locations, as well as replication, for all proxy sources, of the basic raw measurements to improve absolute dating, and to better distinguish the proxy climate signal from noise. Second, more effort is required to improve the understanding of what individual proxies respond to, supported by more site measurements and process studies. These activities should also be mindful of the correlation structure of instrumental data, indicating which adjacent proxy records ought to be in agreement and which not. Third, large-scale climate reconstructions should be attempted using a wide variety of techniques, emphasizing those for which quantified errors can be estimated at specified timescales. Fourth, a greater use of climate model simulations is needed to guide the choice of reconstruction techniques (the pseudo-proxy concept) and possibly help determine where, given limited resources, future sampling should be concentrated.