995 resultados para 301-U1301C
Resumo:
Iron nanowires encapsulated in aligned carbon nanotube bundles show interesting magnetic properties. Besides the increased coercivity, Barkhausen jumps with 5 emu/g steps in magnetization are observed due to magnetization reversal or depinning of domains. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A shear flexible 4-noded finite element formulation, having five mechanical degrees of freedom per node, is presented for modeling the dynamic as well as the static thermal response of laminated composites containing distributed piezoelectric layers. This element has been developed to have one electrical degree of freedom per piezoelectric layer. The mass, stiffness and thermo-electro-mechanical coupling effects on the actuator and sensor layers have been considered. Numerical studies have been conducted to investigate both the sensory and active responses on piezoelectric composite beam and plate structures. It is. concluded that both the thermal and pyroelectric effects are important and need to be considered in the precision distributed control of intelligent structures.
Resumo:
Many interesting features of the dynamics of simple liquids near the glass transition may be understood in terms of properties of the free-energy landscape obtained from numerical studies of a model free-energy functional. Main results obtained from this approach are summarized and a list of references to relevant publications is provided. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A many-body theory of paramagnetic Kondo insulators is described, focusing specifically on single-particle dynamics, scattering rates, dc transport and optical conductivities. This is achieved by development of a non-perturbative local moment approach to the symmetric periodic Anderson model within the framework of dynamical mean-field theory. Our natural focus is the strong-coupling, Kondo lattice regime, in particular the resultant 'universal' scaling behaviour in terms of the single, exponentially small low-energy scale characteristic of the problem. Dynamics/transport on all relevant (ω, T)-scales are considered, from the gapped/activated behaviour characteristic of the low-temperature insulator through to explicit connection to single-impurity physics at high ω and/or T; and for optical conductivities emphasis is given to the nature of the optical gap, the temperature scale responsible for its destruction and the consequent clear distinction between indirect and direct gap scales. Using scaling, explicit comparison is also made to experimental results for dc transport and optical conductivities of Ce3Bi4Pt3, SmB6 and YbB12. Good agreement is found, even quantitatively; and a mutually consistent picture of transport and optics results.
Resumo:
Shock waves are one of the most competent mechanisms of energy dissipation observed in nature. We have developed a novel device to generate controlled micro-shock waves using an explosive-coated polymer tube. In this study, we harnessed these controlled micro-shock waves to develop a unique bacterial transformation method. The conditions were optimized for the maximum transformation efficiency in Escherichia coli. The maximum transformation efficiency was obtained when we used a 30 cm length polymer tube, 100 mu m thick metal foil, 200 mM CaCl(2), 1 ng/mu l plasmid DNA concentration, and 1 x 10(9) cell density. The highest transformation efficiency achieved (1 x 10(-5) transformants/cell) was at least 10 times greater than the previously reported ultrasound-mediated transformation (1 x 10(-6) transformants/cell). This method was also successfully employed for the efficient and reproducible transformation of Pseudomonas aeruginosa and Salmonella typhimurium. This novel method of transformation was shown to be as efficient as electroporation with the added advantage of better recovery of cells, reduced cost (40 times cheaper than a commercial electroporator), and growth phase independent transformation. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Activities in the PbO-PbSO4 melts at 1253 K have been measured by emf and gas-equilibration techniques. The activity of PbO was directly obtained from the emf of the solid oxide cell, Pt, Ni-NiO/CaO-ZrO2/Auo.92PbO.08, PbOx-PbSO4(1-x), Ir, Pt for 1.0 >XPbO > 0.6. The melt and the alloy were contained in closed zirconia crucibles. Since the partial pressure of SO2 gas in equilibrium with the melt and alloy was appreciable (>0.08 atm) atXPbO < 0.6, activities at lower PbO concentrations were derived from measurements of the weight gain of pure PbO under controlled gas streans of Ar + SO2 + O2. The partial and integral free energies of mixing at 1253 K were calculated and found to fit a subregular model: ΔGEPbO =X2PbSO4 {-42,450 + 20,000X2PbSO4} J mol-1 ΔGEPbO =X2pbSO {-12,450 - 20,000XPbS} J mol-1 ΔGEpbSOXPbSO4 {-32,450XPbS - 22,450XPbSO4 } J mol-1. The standard free energy of formation of liquid PbSO4 from pure liquid PbO and gaseous SO3 at 1 atm at 1253 K was evaluated as -88.02 (±0.72) kJ mol-1.
Resumo:
Intra-aortic balloon pumping is a counter pulsation technique for temporary circulatory assistance in cardiogenic shock and other low cardiac output conditions. Conventional systems use a balloon at the end of a catheter driven by a solenoid valve, controlled by patient's ECG or ventricular pressure signal. This results in time delay introducted by solenoid spool inertia, gas inertia, and hysteresis effects of the solenoid. Fluidics, because of their non-moving part operation and high switching speeds, minimizes the inertial effects while contributing high reliability. This communication describes a fluidic system developed for driving the balloon accepting electric control signals.
Resumo:
We report the synthesis of aligned arrays of millimeter long carbon nanotubes (CNTs), from benzene and ferrocene as the molecular precursor and catalyst respectively, by a one-step chemical vapor deposition technique. The length of the grown CNTs depends on the reaction temperature and increases from similar to 85 mu m to similar to 1.4 mm when the synthesis temperature is raised from 650 to 1100 degrees C, while the tube diameter is almost independent of the preparation temperature and is similar to 80 nm. The parallel arrangement of the CNTs, as well as their tube diameter can be verified spectroscopically by small angle X-ray scattering (SAXS) studies. Based on electron diffraction scattering (EDS) studies of the top and the base of the CNT films, a root growth process can be deduced.
Resumo:
It has been observed that a majority of glaciers in the Himalayas have been retreating. In this paper, we show that there are two major factors which control the advance/retreat of the Himalayan glaciers. They are the slope of the glacier and changes in the equilibrium line altitude. While it is well known, that these factors are important, we propose a new way of combining them and use it to predict retreat. The functional form of this model has been derived from numerical simulations using an ice-flow code. The model has been successfully applied to the movement of eight Himalayan glaciers during the past 25 years. It explains why the Gangotri glacier is retreating while Zemu of nearly the same length is stationary, even if they are subject to similar environmental changes. The model has also been applied to a larger set of glaciers in the Parbati basin, for which retreat based on satellite data is available, though over a shorter time period.
Resumo:
CAELinux is a Linux distribution which is bundled with free software packages related to Computer Aided Engineering (CAE). The free software packages include software that can build a three dimensional solid model, programs that can mesh a geometry, software for carrying out Finite Element Analysis (FEA), programs that can carry out image processing etc. Present work has two goals: 1) To give a brief description of CAELinux 2) To demonstrate that CAELinux could be useful for Computer Aided Engineering, using an example of the three dimensional reconstruction of a pig liver from a stack of CT-scan images. One can note that instead of using CAELinux, using commercial software for reconstructing the liver would cost a lot of money. One can also note that CAELinux is a free and open source operating system and all software packages that are included in the operating system are also free. Hence one can conclude that CAELinux could be a very useful tool in application areas like surgical simulation which require three dimensional reconstructions of biological organs. Also, one can see that CAELinux could be a very useful tool for Computer Aided Engineering, in general.
Resumo:
Experiments are conducted in the W-Si system to understand the diffusion mechanism of the species. The activation energies from integrated diffusion coefficients are calculated as 152 +/- 7 and 301 +/- 40 kJ/mol in the WSi2 and W5Si3 phases, respectively. In both the phases, Si has a much higher diffusion rate compared to W. This is not surprising to find in the WSi2 phase, if we consider the number of nearest neighbors for both the elements in the crystal. The diffusion of W in this phase indicates the presence of W antisites. The faster diffusion rate of Si in the W5Si3 phase indicates the presence of higher concentration of vacancies on the Si sublattice compared to W sublattice.
Resumo:
This paper deals with the thermo-physical changes that a droplet undergoes when it is radiatively heated in a levitated environment. The heat and mass transport model has been developed along with chemical kinetics within a cerium nitrate droplet. The chemical transformation of cerium nitrate to ceria during the process is predicted using Kramers' reaction mechanism which justifies the formation of ceria at a very low temperature as observed in experiments. The rate equation modeled by Kramers is modified suitably to be applicable within the framework of a droplet, and predicts experimental results well in both bulk form of cerium nitrate and in aqueous cerium nitrate droplet. The dependence of dissociation reaction rate on droplet size is determined and the transient mass concentration of unreacted cerium nitrate is reported. The model is validated with experiments both for liquid phase vaporization and chemical reaction. Vaporization and chemical conversion are simulated for different ambient conditions. The competitive effects of sensible heating rate and the rate of vaporization with diffusion of cerium nitrate is seen to play a key role in determining the mass fraction of ceria formed within the droplet. Spatially resolved modeling of the droplet enables the understanding of the conversion of chemical species in more detail.