1000 resultados para 24-Ethyl-5alpha-Cholestan-3beta-ol per unit sediment mass
Resumo:
Biogeochemical measurements in sediment cores collected with a TV-MUC in the Black Sea during MSM15/1, Northwest Crimea (HYPOX Project), at water depths between 105-207 m. Sampling was performed along gradient of oxygen bottom water concentrations between oxic (150 µmol L-1), variable hypoxic (3-60 µmol L-1 O2) and anoxic, sulfidic conditions. concentrations of organic carbon (Corg) and nitrogen (N) were measured on finely powdered, freeze-dried subsamples of sediment using a using a Fisons NA-1500 elemental analyzer. For organic carbon determination samples were pre-treated with 12.5% HCl to remove carbonates. Chlorophyll a (chl a), phaeopigments (PHAEO) and chloroplastic pigment equivalents (CPE) was measured according to Schubert et al., (2005) and total hydrolyzable amino acids (THAA) and single amino acid: ASP, GLU, SER, HIS, GLY, THR, ARG, ALA, TYR, MET, VAL, PHE, ILE, LEU, LYS following Dauwe et al., 1998.
Resumo:
The book summarizes data on distribution and composition of sedimentary material suspended in waters of the Atlantic Ocean and its seas. Results of observations of Soviet and foreign expeditions are given. Distribution of suspended matter in sections across the ocean, as well as in the most studied seas are shown. New data on grain size, mineral and chemical composition of suspended matter are published. Summary of history of investigation of bottom sediments from the Atlantic Ocean from the first scientific cruises to the present is done. A brief description of sediment types in the ocean and a detailed description of Mediterranean Sea sediments are given.
Resumo:
The book is devoted to study of diagenetic changes of organic matter and mineral part of sediments and interstitial waters of the Pacific Ocean due to physical-chemical and microbiological processes. Microbiological studies deal with different groups of bacteria. Regularities of quantitative distribution and the role of microorganisms in geochemical processes are under consideration. Geochemical studies highlight redox processes of the early stages of sediment diagenesis, alterations of interstitial waters, regularities of variations in chemical composition of iron-manganese nodules.
Resumo:
In the framework of a multidisciplinary research program, an organic geochemical study was carried out on a drill core which comprises a 245 m thick sequence of light-colored, Upper Albian marlstones that were deposited in the central part of the Lower Saxony basin (northern Germany). For part of the Upper Albian sequence, high-resolution measurements of carbonate contents reveal cycles which can be related to earth orbital forcing. Based on these data, sediment accumulation rates were calculated to be in the order of 15 g/m**2/yr. These high accumulation rates contrast with very low organic carbon contents and an extremely poor preservation of the autochthonous organic matter. Most of the sedimentary organic matter is of terrigenous origin and mainly derived from the erosion of older sedimentary rocks. Organic petrography reveals only a very small fraction of marine organic particles. Carbon/sulphur ratios, pristane/phytane ratios as well as the predominance of resedimented organic particles over autochthonous organic particles suggest that aerobic degradation processes rather than anaerobic processes (sulphate reduction) were responsible for the degradation of the organic matter. Furthermore, the scarcity of terrigenous organic particles (vitrinite) indicates that there was little vegetation on nearby land areas. To explain these analytical results, a depositional model was developed which could explain the scarcity of organic matter in the Upper Albian sediments. This model is based on downwelling of oxygen-rich, saline waters of Tethyan origin, which reduces the nutrient content of surface waters and thus primary bioproductivity while degradation of primary organic matter in the water column is enhanced at the same time. These conditions contrast to those which existed in Barremian and early Aptian times in this basin, when limited water exchange with adjacent oceans caused oxygen deficiency and the deposition of numerous organic carbon-rich black shales. The thick, organic matter-poor Upper Albian sequence of northern Germany also contrasts with comparatively thin, time-equivalent, deep-sea black shales from Italy. This discrepancy indicates that local and regional oceanographic factors (at least in this case) have a greater influence on organic matter deposition than global events.
Resumo:
Results of the analyses of twenty-three samples from the Middle Miocene to Lower Pliocene strata from DSDP Site 467, offshore California, are presented. The analyses were performed with the aim of determining the origin of the organic matter, the stratigraphic section's hydrocarbon generation potential and extent of organic diagenesis. Organic carbon contents are an order of magnitude greater than those typically found in deep sea sediments, suggesting an anoxic depositional environment and elevated levels of primary productivity. Hydrocarbon generation potentials are above average for most samples. The results of elemental analyses indicate that the kerogens are primarily composed of type II organic matter and are thermally immature. Analysis of the bitumen fractions confirms that the samples are immature. In cores from 541 to 614 meters, the gas chromatograms of the C15+ non-aromatic hydrocarbon fractions are dominated by a single peak which was identified as 17*(H), 18*(H), 21beta(H)-28, 30-bisnorhopane. This interval is the same area in which the highest degrees of anoxia are observed as reflected by the lowest pristane/phytane ratios. This correlation may have some implications with regard to the origin of the bisnorhopane and its possible use as an indicator of anoxic depositional conditions within thermally immature sediments.
Resumo:
The Rainbow Hydrothermal Field (36°N, Mid-Atlantic Ridge) is one of three presently known fields related to serpentinization of ultramafic rocks accompanied by formation of hydrogen- and methane rich solutions. Gas chromatographic and molecular gas chromatographic - mass spectrometric investigations of sulfide ores and sediments from this field confirmed predominantly biological nature of bitumoids related to high-temperature transformation of biomass of the hydrothermal biological community. At the same time ores of the Rainbow field contain significant amounts of compounds that are not directly related to biogenic synthesis. This fact suggests possibility of abiogenic synthesis of methane and even complex hydrocarbons during serpentinization of ultramafic rocks.
Resumo:
Based on a high-resolution analysis of the diatom signal and biogenic bulk components at site GeoB3606-1 (25°S, off Namibia), we describe rapid palaeoceanographic changes in the Benguela Upwelling System (BUS) from early MIS 3 through to the early Holocene (55 000 to 7 000 14C yr BP). Coastal upwelling strongly varied at 25°S from MIS 3 through to MIS 2. The abrupt decrease in the accumulation rate of biogenic silica and diatoms from MIS 3 into MIS 2 records rapid oceanographic changes in the BUS off Namibia. During MIS 3, leakage of excess H4SiO4 acid from the Southern Ocean into low-latitude surface waters, as indicated by the occurrence of Antarctic diatoms, enhanced the production of spores of Chaetoceros at the expense of calcareous phytoplankton. Furthermore, shallower Antarctic Intermediate Water (AAIW) would have enriched the thermocline off Namibia with silicate transported from the Southern Ocean. The strong decrease of the siliceous signal throughout MIS 2 represents a decrease in the nutrient input to the BUS, even though the diatom assemblage is still dominated by spores of the upwelling-associated diatom genus Chaetoceros. Depletion of silicate in the thermocline from the onset of MIS 2 through to the early Holocene reflects the shutdown of AAIW injection from the Southern Ocean into the BUS, causing upwelled waters to become reduced in silicate, hence less favourable for diatom production. The deglaciation and early Holocene are characterised by the replacement of the upwelling-associated flora by a non-upwelling-related diatom community, reflecting weakened upwelling, retraction of the seaward extension of the chlorophyll filament off Lüderitz, and dominance of warmer waters.