964 resultados para 230Th flux norm
Resumo:
The field observation of this study was carried out in the Changjiang Estuary from May 19 to 26,2003, just a few days before the Three Gorges Dam began to store water. A total of 29 stations, including 2 anchor stations, were distributed through almost the whole salinity gradient Based on the data gained from these stations, the biogeochemical characteristics of dissolved oxygen (DO) were examined. Spatial distribution of DO concentrations showed the pattern that it increased in a downriver direction. DO concentration generally varied within a narrow range of 733-8.10 mg l(-1) in the freshwater region and the west part of the mixed water region, and after that it increased rapidly. In vertical direction, the differences in DO concentrations between surface and 2 m above the bottom were big at the stations with water depths exceeding 20 m; DO concentration up to 14.88 mg l(-1) was recorded at the sea surface, while at 2 m above the bottom its concentration was only about 4 mg l(-1). The fluctuation in DO concentrations was small during a period of 48 h in the mixed water region and 2 m above the bottom of the seawater region; while it was large during the same period in the seawater region for surface and 5 m below the surface layer, and a maximum variation from 8.77 to 12.66 mg l(-1) in 4 h was recorded. Oxygen fluxes also showed a marked spatio-temporal variation. As a whole, the freshwater region and mixed water region were an oxygen sink while the seawater region was a source. Relationships between dissolved oxygen and some biogeochemical parameters which could markedly influence its spatio-temporal distribution were discussed in this paper. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The Integrated Environmental Monitoring (IEM) project, part of the Asia-Pacific Environmental Innovation Strategy (APEIS) project, developed an integrated environmental monitoring system that can be used to detect, monitor, and assess environmental disasters, degradation, and their impacts in the Asia-Pacific region. The system primarily employs data from the moderate resolution imaging spectrometer (MODIS) sensor on the Earth Observation System- (EOS-) Terra/Aqua satellite,as well as those from ground observations at five sites in different ecological systems in China. From the preliminary data analysis on both annual and daily variations of water, heat and CO2 fluxes, we can confirm that this system basically has been working well. The results show that both latent flux and CO2 flux are much greater in the crop field than those in the grassland and the saline desert, whereas the sensible heat flux shows the opposite trend. Different data products from MODIS have very different correspondence, e.g. MODIS-derived land surface temperature has a close correlation with measured ones, but LAI and NPP are quite different from ground measurements, which suggests that the algorithms used to process MODIS data need to be revised by using the local dataset. We are now using the APEIS-FLUX data to develop an integrated model, which can simulate the regional water,heat, and carbon fluxes. Finally, we are expected to use this model to develop more precise high-order MODIS products in Asia-Pacific region.
Resumo:
High-resolution sampling, measurements of organic carbon contents and C-14 signatures of selected four soil profiles in the Haibei Station situated on the northeast Tibetan Plateau, and application of C-14 tracing technology were conducted in an attempt to investigate the turnover times of soil organic carbon and the soil-CO2 flux in the alpine meadow ecosystem. The results show that the organic carbon stored in the soils varies from 22.12x10(4) kg C hm(-2) to 30.75x10(4) kg C hm(-2) in the alpine meadow ecosystems, with an average of 26.86x10(4) kg C hm(-2). Turnover times of organic carbon pools increase with depth from 45 a to 73 a in the surface soil horizon to hundreds of years or millennia or even longer at the deep soil horizons in the alpine meadow ecosystems. The soil-CO2 flux ranges from 103.24 g C m(-2) a(-1) to 254.93 gC m(-2) a(-1), with an average of 191.23 g C m(-2) a(-1). The CO2 efflux produced from microbial decomposition of organic matter varies from 73.3 g C m(-2) a(-1) to 181 g C m(-2) a(-1). More than 30% of total soil organic carbon resides in the active carbon pool and 72.8%. 81.23% of total CO2 emitted from organic matter decomposition results from the topsoil horizon (from 0 cm to 10 cm) for the Kobresia meadow. Responding to global warming, the storage, volume of flow and fate of the soil organic carbon in the alpine meadow ecosystem of the Tibetan Plateau will be changed, which needs further research.
Resumo:
Although respiration of organisms and biomass as well as fossil fuel burning industrial production are identified as the major sources, the CO2 flux is still unclear due to the lack of proper measurements. A mass-balance approach that exploits differences in the carbon isotopic signature (delta(13)C) of CO2 Sources and sinks was introduced and may provide a means of reducing uncertainties in the atmospheric budget. delta(13)C measurements of atmospheric CO2 yielded an average of - 10.3 parts per thousand relative to the Peedee Belemnite standard; soil and plants had a narrow range from -25.09 parts per thousand to -26.51 parts per thousand and averaged at -25.80 parts per thousand. Based on the fact of steady fractionation and enrichment during respiration of mitochondria, we obtained the emission Of CO2 of 35.451 mol m(-2) a(-1) and CO2 flux of 0.2149 mu mol m(-2) s(-)1. The positive CO2 flux indicated the Haibei Alpine Meadow Ecosystem a source rather than a sink. The mass-balance model can be applied for other ecosystem even global carbon cycles because it neglects the complicated process of carbon metabolism, however just focuses on stable carbon isotopic compositions in any of compartments of carbon sources and sinks. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
We examined the CO2 exchange of a Kobresia meadow ecosystem on the Qinghai-Tibetan plateau using a chamber system. CO2 efflux from the ecosystem was strongly dependence on soil surface temperature. The COZ efflux-temperature relationship was identical under both light and dark conditions, indicating that no photosynthesis could be detected under light conditions during the measurement period. The temperature sensitivity (Q(10)) of the COZ efflux showed a marked transition around -1.0 degrees C; Q(10) was 2.14 at soil surface temperatures above and equal to -1.0 degrees C but was 15.3 at temperatures below -1.0 degrees C. Our findings suggest that soil surface temperature was the major factor controlling winter COZ flux for the alpine meadow ecosystem and that freeze-thaw cycles at the soil surface layer play an important role in the temperature dependence of winter CO2 flux. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
[1] The alpine meadow ecosystem on the Qinghai-Tibetan Plateau may play a significant role in the regional carbon cycle. To assess the CO2 flux and its relationship to environmental controls in the ecosystem, eddy covariance of CO2, H2O, and energy fluxes was measured with an open-path system in an alpine meadow on the plateau at an elevation of 3,250 m. Net ecosystem CO2 influx (Fc) averaged 8.8 g m(-2) day(-1) during the period from August 9 to 31, 2001, with a maximum of 15.9 g m(-2) day(-1) and a minimum of 2.3 g m(-2) day(-1). Daytime Fc averaged 16.7 g m(-2) day(-1) and ranged from 10.4 g m(-2) day(-1) to 21.7 g m(-2) day(-1) during the study period. For the same photosynthetic photon flux density (PPFD), gross CO2 uptake (Gc) was significantly higher on cloudy days than on clear days. However, mean daily Gc was higher on clear days than on cloudy days. With high PPFD, Fc decreased as air temperature increased from 10degreesC to 23degreesC. The greater the difference between daytime and nighttime air temperatures, the more the sink was strengthened. Daytime average water use efficiency of the ecosystem (WUEe) was 8.7 mg (CO2)(g H2O)(-1); WUEe values ranged from 5.8 to 15.3 mg (CO2)(g H2O)(-1). WUEe increased with the decrease in vapor pressure deficit. Daily albedo averaged 0.20, ranging from 0.19 to 0.22 during the study period, and was negatively correlated with daily Fc. Our measurements provided some of the first evidence on CO2 exchange for a temperate alpine meadow ecosystem on the Qinghai-Tibetan Plateau, which is necessary for assessing the carbon budget and carbon cycle processes for temperate grassland ecosystems.
Resumo:
Although the release of nitric oxide (NO) from biomaterials has been shown to reduce the foreign body response (FBR), the optimal NO release kinetics and doses remain unknown. Herein, polyurethane-coated wire substrates with varying NO release properties were implanted into porcine subcutaneous tissue for 3, 7, 21 and 42 d. Histological analysis revealed that materials with short NO release durations (i.e., 24 h) were insufficient to reduce the collagen capsule thickness at 3 and 6 weeks, whereas implants with longer release durations (i.e., 3 and 14 d) and greater NO payloads significantly reduced the collagen encapsulation at both 3 and 6 weeks. The acute inflammatory response was mitigated most notably by systems with the longest duration and greatest dose of NO release, supporting the notion that these properties are most critical in circumventing the FBR for subcutaneous biomedical applications (e.g., glucose sensors).
Resumo:
This research project uses field measurements to investigate the cooling of a triple-junction, photovoltaic cell under natural convection when subjected to various amounts of insolation. The team built an experimental apparatus consisting of a mirror and Fresnel lens to concentrate light onto a triple-junction photovoltaic cell, mounted vertically on a copper heat sink. Measurements were taken year-round to provide a wide range of ambient conditions. A surface was then generated, in MATLAB, using Sparrow’s model for natural convection on a vertical plate under constant heat flux. This surface can be used to find the expected operating temperature of a cell at any location, given the ambient temperature and insolation. This research is an important contribution to the industry because it utilizes field data that represents how a cell would react under normal operation. It also extends the use of a well-known model from a one-sun environment to a multi-sun one.
Resumo:
A finite volume computer model of the continuous casting process for steel flat products has been developed. In this first stage, the model concentrates on the hydrodynamic aspects of the process and in particular the dynamic behavior of the metal/slag interface. The model was validated against experimental measurements obtained in a water model apparatus.