435 resultados para 2202 Electromagnetismo


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background The evolutionary advantages of selective attention are unclear. Since the study of selective attention began, it has been suggested that the nervous system only processes the most relevant stimuli because of its limited capacity [1]. An alternative proposal is that action planning requires the inhibition of irrelevant stimuli, which forces the nervous system to limit its processing [2]. An evolutionary approach might provide additional clues to clarify the role of selective attention. Methods We developed Artificial Life simulations wherein animals were repeatedly presented two objects, "left" and "right", each of which could be "food" or "non-food." The animals' neural networks (multilayer perceptrons) had two input nodes, one for each object, and two output nodes to determine if the animal ate each of the objects. The neural networks also had a variable number of hidden nodes, which determined whether or not it had enough capacity to process both stimuli (Table 1). The evolutionary relevance of the left and the right food objects could also vary depending on how much the animal's fitness was increased when ingesting them (Table 1). We compared sensory processing in animals with or without limited capacity, which evolved in simulations in which the objects had the same or different relevances. Table 1. Nine sets of simulations were performed, varying the values of food objects and the number of hidden nodes in the neural networks. The values of left and right food were swapped during the second half of the simulations. Non-food objects were always worth -3. The evolution of neural networks was simulated by a simple genetic algorithm. Fitness was a function of the number of food and non-food objects each animal ate and the chromosomes determined the node biases and synaptic weights. During each simulation, 10 populations of 20 individuals each evolved in parallel for 20,000 generations, then the relevance of food objects was swapped and the simulation was run again for another 20,000 generations. The neural networks were evaluated by their ability to identify the two objects correctly. The detectability (d') for the left and the right objects was calculated using Signal Detection Theory [3]. Results and conclusion When both stimuli were equally relevant, networks with two hidden nodes only processed one stimulus and ignored the other. With four or eight hidden nodes, they could correctly identify both stimuli. When the stimuli had different relevances, the d' for the most relevant stimulus was higher than the d' for the least relevant stimulus, even when the networks had four or eight hidden nodes. We conclude that selection mechanisms arose in our simulations depending not only on the size of the neuron networks but also on the stimuli's relevance for action.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work is supported by Brazilian agencies Fapesp, CAPES and CNPq

Relevância:

10.00% 10.00%

Publicador:

Resumo:

JT is the recipient of a Post-Doctoral Fellowship from CNPq, Brazil. NGC and ACR are recipients of grants from CNPq, FAPESP, FAPESP-Cinapce, CAPES-PROEX, CNPq-Research Fellowships, Brazil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background Despite new brain imaging techniques that have improved the study of the underlying processes of human decision-making, to the best of our knowledge, there have been very few studies that have attempted to investigate brain activity during medical diagnostic processing. We investigated brain electroencephalography (EEG) activity associated with diagnostic decision-making in the realm of veterinary medicine using X-rays as a fundamental auxiliary test. EEG signals were analysed using Principal Components (PCA) and Logistic Regression Analysis Results The principal component analysis revealed three patterns that accounted for 85% of the total variance in the EEG activity recorded while veterinary doctors read a clinical history, examined an X-ray image pertinent to a medical case, and selected among alternative diagnostic hypotheses. Two of these patterns are proposed to be associated with visual processing and the executive control of the task. The other two patterns are proposed to be related to the reasoning process that occurs during diagnostic decision-making. Conclusions PCA analysis was successful in disclosing the different patterns of brain activity associated with hypothesis triggering and handling (pattern P1); identification uncertainty and prevalence assessment (pattern P3), and hypothesis plausibility calculation (pattern P2); Logistic regression analysis was successful in disclosing the brain activity associated with clinical reasoning success, and together with regression analysis showed that clinical practice reorganizes the neural circuits supporting clinical reasoning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phase 1: To validate Near-Infrared Reflectance Analysis (NIRA) as a fast, reliable and suitable method for routine evaluation of human milk’s nitrogen and fat content. Phase 2: To determine whether fat content, protein content and osmolality of HM before and after fortification may affect gastroesophageal reflux (GER) in symptomatic preterm infants. Patients and Methods: Phase 1: 124 samples of expressed human milk (55 from preterm mothers and 69 from term mothers) were used to validate NIRA against traditional methods (Gerber method for fat and Kjeldhal method for nitrogen). Phase 2: GER was evaluated in 17 symptomatic preterm newborns fed naïve and fortified HM by combined pH/intraluminal-impedance monitoring (pH-MII). HM fat and protein content was analysed by a Near-Infrared-Reflectance-Analysis (NIRA). HM osmolality was tested before and after fortification. GER indexes measured before and after fortification were compared, and were also related with HM fat and protein content and osmolality before and after fortification. Results: Phase 1: · A strong agreement was found between traditional methods’ and NIRA’s results (expressed as g/100 g of milk), both for fat and nitrogen content in term (mean fat content: NIRA=2.76; Gerber=2.76; mean nitrogen content: NIRA=1.88; Kjeldhal =1.92) and preterm (mean fat content: NIRA=3.56; Kjeldhal=3.52; mean nitrogen content: NIRA=1.91; Kjeldhal =1.89) mother’s milk. · Nitrogen content of the milk samples, measured by NIRA, ranged from 1.18 to 2.71 g/100 g of milk in preterm milk and from 1.48 to 2.47 in term milk; fat content ranged from 1.27 to 6.23 g/100 g of milk in preterm milk and from 1.01 to 6.01 g/100 g of milk in term milk. Phase 2: · An inverse correlation was found between naïve HM protein content and acid reflux index (RIpH: p=0.041, rho=-0.501). · After fortification, osmolality often exceeded the values recommended for infant feeds; furthermore, a statistically significant (p<.05) increase in non acid reflux indexes was observed. Conclusions: NIRA can be used as a fast, reliable and suitable tool for routine monitoring of macronutrient content of human milk. Protein content of naïve HM may influence acid GER in preterm infants. A standard fortification of HM may worsen non acid GER indexes and, due to the extreme variability in HM composition, may overcome both recommended protein intake and HM osmolality. Thus, an individualized fortification, based on the analysis of the composition of naïve HM, could optimize both nutrient intake and feeding tolerance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Action observation leads to neural activation of the human premotor cortex. This study examined how the level of motor expertise (expert vs. novice) in ballroom dancing and the visual viewpoint (internal vs. external viewpoint) influence this activation within different parts of this area of the brain. Results Sixteen dance experts and 16 novices observed ballroom dance videos from internal or external viewpoints while lying in a functional magnetic resonance imaging scanner. A conjunction analysis of all observation conditions showed that action observation activated distinct networks of premotor, parietal, and cerebellar structures. Experts revealed increased activation in the ventral premotor cortex compared to novices. An internal viewpoint led to higher activation of the dorsal premotor cortex. Conclusions The present results suggest that the ventral and dorsal premotor cortex adopt differential roles during action observation depending on the level of motor expertise and the viewpoint.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Pulmonary Embolism Severity Index (PESI) is a validated clinical prognostic model for patients with acute pulmonary embolism (PE). Our goal was to assess the PESI's inter-rater reliability in patients diagnosed with PE. We prospectively identified consecutive patients diagnosed with PE in the emergency department of a Swiss teaching hospital. For all patients, resident and attending physician raters independently collected the 11 PESI variables. The raters then calculated the PESI total point score and classified patients into one of five PESI risk classes (I-V) and as low (risk classes I/II) versus higher-risk (risk classes III-V). We examined the inter-rater reliability for each of the 11 PESI variables, the PESI total point score, assignment to each of the five PESI risk classes, and classification of patients as low versus higher-risk using kappa ( ) and intra-class correlation coefficients (ICC). Among 48 consecutive patients with an objective diagnosis of PE, reliability coefficients between resident and attending physician raters were > 0.60 for 10 of the 11 variables comprising the PESI. The inter-rater reliability for the PESI total point score (ICC: 0.89, 95% CI: 0.81-0.94), PESI risk class assignment ( : 0.81, 95% CI: 0.66-0.94), and the classification of patients as low versus higher-risk ( : 0.92, 95% CI: 0.72-0.98) was near perfect. Our results demonstrate the high reproducibility of the PESI, supporting the use of the PESI for risk stratification of patients with PE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 68-year-old male patient presented with mild tenderness in the suprasymphyseal region, hematuria and dysuria. In this case typical symptoms of a sigmoid-vesical fistula were initially absent. Because of hematuria and the findings provided by urethrocystoscopy, the radiological diagnosis was a bladder tumor. Contrast-enhanced computed tomography with rectal contrast administration provided the decisive information. In addition to sigmoid diverticulitis (fat stranding/centipede sign) in the urographic phase, contrast media was well traceable intraluminally from the bladder through the bladder wall abscess and subsequently in the sigmoid colon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Excitotoxic neuronal injury by action of the glutamate receptors of the N-methyl-d-aspartate (NMDA) subtype have been implicated in the pathogenesis of brain damage as a consequence of bacterial meningitis. The most potent and selective blocker of NMDA receptors containing the NR2B subunit is (R,S)-alpha-(4-hydroxyphenyl)-beta-methyl-4-(phenylmethyl)-1-piperid inepropanol (RO 25-6981). Here we evaluated the effect of RO 25-6981 on hippocampal neuronal apoptosis in an infant rat model of meningitis due to Streptococcus pneumoniae. Animals were randomized for treatment with RO 25-6981 at a dosage of either 0.375 mg (15 mg/kg; n = 28) or 3.75 mg (150 mg/kg; n = 15) every 3 h or an equal volume of sterile saline (250 microl; n = 40) starting at 12 h after infection. Eighteen hours after infection, animals were assessed clinically and seizures were observed for a period of 2 h. At 24 h after infection animals were sacrificed and brains were examined for apoptotic injury to the dentate granule cell layer of the hippocampus. RESULTS: Treatment with RO 25-6981 had no effect on clinical scores, but the incidence of seizures was reduced (P < 0.05 for all RO 25-6981 treated animals combined). The extent of apoptosis was not affected by low or high doses of RO 25-6981. Number of apoptotic cells (median [range]) was 12.76 [3.16-25.3] in animals treated with low dose RO 25-6981 (control animals 13.8 [2.60-31.8]; (P = NS) and 9.8 [1.7-27.3] (controls: 10.5 [2.4-21.75]) in animals treated with high dose RO 25-6981 (P = NS). CONCLUSIONS: Treatment with a highly selective blocker of NMDA receptors containing the NR2B subunit failed to protect hippocampal neurons from injury in this model of pneumococcal meningitis, while it had some beneficial effect on the incidence of seizures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

n this paper, we propose a theoretical model to study the effect of income insecurity of parents and offspring on the child's residential choice. Parents are partially altruistic toward their children and will provide financial help to an independent child when her income is low relative to the parents'. We find that children of more altruistic parents are more likely to become independent. However, first-order stochastic dominance (FOSD) shifts in the distribution of the child's future income (or her parents') have ambiguous effects on the child's residential choice. Parental altruism is the very source of ambiguity in the results. If parents are selfish or the joint income distribution of parents and child places no mass on the region where transfers are provided, a FOSD shift in the distribution of the child's (parents') future income will reduce (raise) the child's current income threshold for independence.