965 resultados para 2-adic complexity
Resumo:
The crystal structure of the modified unsymmetrically N, N'-substituted viologen chromophore, N-ethyl- N'-(2-phosphonoethyl)-4, 4'-bipyridinium dichloride 0.75 hydrate. (1) has been determined. Crystals are triclinic, space group P-1 with Z = 2 in a cell with a = 7.2550(1), b = 13.2038(5), c = 18.5752(7) Å, α = 86.495(3), β = 83.527(2), γ = 88.921(2)o. The two independent but pseudo-symmetrically related cations in the asymmetric unit form one-dimensional hydrogen-bonded chains through short homomeric phosphonic acid O-H...O links [2.455(4), 2.464(4)A] while two of the chloride anions are similarly strongly linked to phosphonic acid groups [O-H…Cl, 2.889(4), 2.896(4)Å]. The other two chloride anions together with the two water molecules of solvation (one with partial occupancy) form unusual cyclic hydrogen-bonded bis(Cl...water) dianion units which lie between the layers of bipyridylium rings of the cation chain structures with which they are weakly associated.
Resumo:
Road curves are an important feature of road infrastructure and many serious crashes occur on road curves. In Queensland, the number of fatalities is twice as many on curves as that on straight roads. Therefore, there is a need to reduce drivers’ exposure to crash risk on road curves. Road crashes in Australia and in the Organisation for Economic Co-operation and Development(OECD) have plateaued in the last five years (2004 to 2008) and the road safety community is desperately seeking innovative interventions to reduce the number of crashes. However, designing an innovative and effective intervention may prove to be difficult as it relies on providing theoretical foundation, coherence, understanding, and structure to both the design and validation of the efficiency of the new intervention. Researchers from multiple disciplines have developed various models to determine the contributing factors for crashes on road curves with a view towards reducing the crash rate. However, most of the existing methods are based on statistical analysis of contributing factors described in government crash reports. In order to further explore the contributing factors related to crashes on road curves, this thesis designs a novel method to analyse and validate these contributing factors. The use of crash claim reports from an insurance company is proposed for analysis using data mining techniques. To the best of our knowledge, this is the first attempt to use data mining techniques to analyse crashes on road curves. Text mining technique is employed as the reports consist of thousands of textual descriptions and hence, text mining is able to identify the contributing factors. Besides identifying the contributing factors, limited studies to date have investigated the relationships between these factors, especially for crashes on road curves. Thus, this study proposed the use of the rough set analysis technique to determine these relationships. The results from this analysis are used to assess the effect of these contributing factors on crash severity. The findings obtained through the use of data mining techniques presented in this thesis, have been found to be consistent with existing identified contributing factors. Furthermore, this thesis has identified new contributing factors towards crashes and the relationships between them. A significant pattern related with crash severity is the time of the day where severe road crashes occur more frequently in the evening or night time. Tree collision is another common pattern where crashes that occur in the morning and involves hitting a tree are likely to have a higher crash severity. Another factor that influences crash severity is the age of the driver. Most age groups face a high crash severity except for drivers between 60 and 100 years old, who have the lowest crash severity. The significant relationship identified between contributing factors consists of the time of the crash, the manufactured year of the vehicle, the age of the driver and hitting a tree. Having identified new contributing factors and relationships, a validation process is carried out using a traffic simulator in order to determine their accuracy. The validation process indicates that the results are accurate. This demonstrates that data mining techniques are a powerful tool in road safety research, and can be usefully applied within the Intelligent Transport System (ITS) domain. The research presented in this thesis provides an insight into the complexity of crashes on road curves. The findings of this research have important implications for both practitioners and academics. For road safety practitioners, the results from this research illustrate practical benefits for the design of interventions for road curves that will potentially help in decreasing related injuries and fatalities. For academics, this research opens up a new research methodology to assess crash severity, related to road crashes on curves.
Resumo:
The mixed anion mineral dixenite has been studied by Raman spectroscopy, complimented with infrared spectroscopy. The Raman spectrum of dixenite shows bands at 839 and 813 cm-1 assigned to the (AsO3)3- symmetric and antisymmetric stretching modes. The most intense Raman band of dixenite is the band at 526 cm-1 and is assigned to the ν2 AsO33- bending mode. DFT calculations enabled the position of AsO22- symmetric stretching mode at 839 cm-1, the antisymmetric stretching mode at 813 cm-1, and the deformation mode at 449 cm-1 to be calculated. Raman bands at 1026 and 1057 cm-1 are assigned to the SiO42- symmetric stretching vibrations and at 1349 and 1386 cm-1 to the SiO42- antisymmetric stretching vibrations. Both Raman and infrared spectra indicate the presence of water in the structure of dixenite. This brings into question the commonly accepted formula of dixenite as CuMn2+14Fe3+(AsO3)5(SiO4)2(AsO4)(OH)6. The formula may be better written as CuMn2+14Fe3+(AsO3)5(SiO4)2(AsO4)(OH)6•xH2O.
Resumo:
Successful product innovation and the ability of companies to continuously improve their innovation processes are rapidly becoming essential requirements for competitive advantage and long-term growth in both manufacturing and service industries. It is now recognized that companies must develop innovation capabilities across all stages of the product development, manufacture, and distribution cycle. These Continuous Product Innovation (CPI) capabilities are closely associated with a company’s knowledge management systems and processes. Companies must develop mechanisms to continuously improve these capabilities over time. Using results of an international survey on CPI practices, sets of companies are identified by similarities in specific contingencies related to their complexity of product, process, technological, and customer interface. Differences between the learning behaviors found present in the company groups and in the levers used to develop and support these behaviors are identified and discussed. This paper also discusses appropriate mechanisms for firms with similar complexities, and some approaches they can use to improve their organizational learning and product innovation.
Resumo:
The 1:1 proton-transfer compound of the potent substituted amphetamine hallucinogen (R)-1-(8-bromobenzo[1,2-b; 4,5-b']difuran-4-yl)-2-aminopropane (common trivial name 'bromodragonfly') with 3,5-dinitrosalicylic acid, 1-(8-bromobenzo[1,2-b;4,5-b']difuran-4-yl)-2-mmoniopropane 2-carboxy-4,6-dinitrophenolate, C13H13BrNO2+ C7H3N2O7- forms hydrogen-bonded cation-anion chain substructures comprising undulating head-to-tail anion chains formed through C(8) carboxyl O-H...O(nitro) associations and incorporating the aminium groups of the cations. The intra-chain cation-anion hydrogen-bonding associations feature proximal cyclic R33(8) interactions involving both a N+-H...O(phenolate) and the carboxyl O--H...O(nitro)associations. Also present are aromatic pi-pi ring interactions [minimum ring centroid separation, 3.566(2)A; inter-plane dihedral angle, 5.13(1)deg]. A lateral hydrogen-bonding interaction between the third aminium proton and a carboxyl O acceptor link the chain substructures giving a two-dimensional sheet structure. This determination represents the first of any form of this compound and confirms that it has the (R) absolute configuration. The atypical crystal stability is attributed both to the hydrogen-bonded chain substructures provided by the anions, which accommodate the aminium proton-donor groups of the cations and give cross-linking, and to the presence of cation--anion aromatic ring pi-pi interactions.
Resumo:
This Report, prepared for Smart Service Queensland (“SSQ”), addresses legal issues, areas of risk and other factors associated with activities conducted on three popular online platforms—YouTube, MySpace and Second Life (which are referred to throughout this Report as the “Platforms”). The Platforms exemplify online participatory spaces and behaviours, including blogging and networking, multimedia sharing, and immersive virtual environments.
Resumo:
In the structure of the title compound, the salt 2(C12H10N3O4+) (C12H8O6S2)2- . 3H2O, determined at 173 K, the biphenyl-4,4'-disulfonate dianions lie across crystallographic inversion centres with the sulfonate groups interacting head-to-head through centrosymmetric cyclic bis(water)-bridged hydrogen-bonding associations [graph set R4/4(11)], forming chain structures. The 2-(2,4-dinitrobenzyl)pyridinium cations are linked to these chains through N+-H...O(water) hydrogen bonds and a two-dimensional network structure is formed through water bridges between sulfonate and 2-nitro O atoms, while the structure also has weak cation--anion pi-pi aromatic ring interactions [minimum ring centroid separation 3.8441(13)A].
Resumo:
An Approach with Vertical Guidance (APV) is an instrument approach procedure which provides horizontal and vertical guidance to a pilot on approach to landing in reduced visibility conditions. APV approaches can greatly reduce the safety risk to general aviation by improving the pilot’s situational awareness. In particular the incidence of Controlled Flight Into Terrain (CFIT) which has occurred in a number of fatal air crashes in general aviation over the past decade in Australia, can be reduced. APV approaches can also improve general aviation operations. If implemented at Australian airports, APV approach procedures are expected to bring a cost saving of millions of dollars to the economy due to fewer missed approaches, diversions and an increased safety benefit. The provision of accurate horizontal and vertical guidance is achievable using the Global Positioning System (GPS). Because aviation is a safety of life application, an aviation-certified GPS receiver must have integrity monitoring or augmentation to ensure that its navigation solution can be trusted. However, the difficulty with the current GPS satellite constellation alone meeting APV integrity requirements, the susceptibility of GPS to jamming or interference and the potential shortcomings of proposed augmentation solutions for Australia such as the Ground-based Regional Augmentation System (GRAS) justifies the investigation of Aircraft Based Augmentation Systems (ABAS) as an alternative integrity solution for general aviation. ABAS augments GPS with other sensors at the aircraft to help it meet the integrity requirements. Typical ABAS designs assume high quality inertial sensors to provide an accurate reference trajectory for Kalman filters. Unfortunately high-quality inertial sensors are too expensive for general aviation. In contrast to these approaches the purpose of this research is to investigate fusing GPS with lower-cost Micro-Electro-Mechanical System (MEMS) Inertial Measurement Units (IMU) and a mathematical model of aircraft dynamics, referred to as an Aircraft Dynamic Model (ADM) in this thesis. Using a model of aircraft dynamics in navigation systems has been studied before in the available literature and shown to be useful particularly for aiding inertial coasting or attitude determination. In contrast to these applications, this thesis investigates its use in ABAS. This thesis presents an ABAS architecture concept which makes use of a MEMS IMU and ADM, named the General Aviation GPS Integrity System (GAGIS) for convenience. GAGIS includes a GPS, MEMS IMU, ADM, a bank of Extended Kalman Filters (EKF) and uses the Normalized Solution Separation (NSS) method for fault detection. The GPS, IMU and ADM information is fused together in a tightly-coupled configuration, with frequent GPS updates applied to correct the IMU and ADM. The use of both IMU and ADM allows for a number of different possible configurations. Three are investigated in this thesis; a GPS-IMU EKF, a GPS-ADM EKF and a GPS-IMU-ADM EKF. The integrity monitoring performance of the GPS-IMU EKF, GPS-ADM EKF and GPS-IMU-ADM EKF architectures are compared against each other and against a stand-alone GPS architecture in a series of computer simulation tests of an APV approach. Typical GPS, IMU, ADM and environmental errors are simulated. The simulation results show the GPS integrity monitoring performance achievable by augmenting GPS with an ADM and low-cost IMU for a general aviation aircraft on an APV approach. A contribution to research is made in determining whether a low-cost IMU or ADM can provide improved integrity monitoring performance over stand-alone GPS. It is found that a reduction of approximately 50% in protection levels is possible using the GPS-IMU EKF or GPS-ADM EKF as well as faster detection of a slowly growing ramp fault on a GPS pseudorange measurement. A second contribution is made in determining how augmenting GPS with an ADM compares to using a low-cost IMU. By comparing the results for the GPS-ADM EKF against the GPS-IMU EKF it is found that protection levels for the GPS-ADM EKF were only approximately 2% higher. This indicates that the GPS-ADM EKF may potentially replace the GPS-IMU EKF for integrity monitoring should the IMU ever fail. In this way the ADM may contribute to the navigation system robustness and redundancy. To investigate this further, a third contribution is made in determining whether or not the ADM can function as an IMU replacement to improve navigation system redundancy by investigating the case of three IMU accelerometers failing. It is found that the failed IMU measurements may be supplemented by the ADM and adequate integrity monitoring performance achieved. Besides treating the IMU and ADM separately as in the GPS-IMU EKF and GPS-ADM EKF, a fourth contribution is made in investigating the possibility of fusing the IMU and ADM information together to achieve greater performance than either alone. This is investigated using the GPS-IMU-ADM EKF. It is found that the GPS-IMU-ADM EKF can achieve protection levels approximately 3% lower in the horizontal and 6% lower in the vertical than a GPS-IMU EKF. However this small improvement may not justify the complexity of fusing the IMU with an ADM in practical systems. Affordable ABAS in general aviation may enhance existing GPS-only fault detection solutions or help overcome any outages in augmentation systems such as the Ground-based Regional Augmentation System (GRAS). Countries such as Australia which currently do not have an augmentation solution for general aviation could especially benefit from the economic savings and safety benefits of satellite navigation-based APV approaches.
Resumo:
Objective: To determine whether differences existed in lower-extremity joint biomechanics during self-selected walking cadence (SW) and fast walking cadence (FW) in overweight- and normal-weight children.---------- Design: Survey.---------- Setting: Institutional gait study center.---------- Participants: Participants (N=20; mean age ± SD, 10.4±1.6y) from referred and volunteer samples were classified based on body mass index percentiles and stratified by age and sex. Exclusion criteria were a history of diabetes, neuromuscular disorder, or recent lower-extremity injury.---------- Main Outcome Measures: Sagittal, frontal, and transverse plane angular displacements (degrees) and peak moments (newton meters) at the hip, knee, and ankle joints.---------- Results: The level of significance was set at P less than .008. Compared with normal-weight children, overweight children had greater absolute peak joint moments at the hip (flexor, extensor, abductor, external rotator), the knee (flexor, extensor, abductor, adductor, internal rotator), and the ankle (plantarflexor, inverter, external/internal rotators). After including body weight as a covariate, overweight children had greater peak ankle dorsiflexor moments than normal-weight children. No kinematic differences existed between groups. Greater peak hip extensor moments and less peak ankle inverter moments occurred during FW than SW. There was greater angular displacement during hip flexion as well as less angular displacement at the hip (extension, abduction), knee (flexion, extension), and ankle (plantarflexion, inversion) during FW than SW.---------- Conclusions: Overweight children experienced increased joint moments, which can have long-term orthopedic implications and suggest a need for more nonweight-bearing activities within exercise prescription. The percent of increase in joint moments from SW to FW was not different for overweight and normal-weight children. These findings can be used in developing an exercise prescription that must involve weight-bearing activity.
Resumo:
Camera Botanica 2 - testing a design process (unrealised building). Sited in a highly biodiverse and bushfire prone heathlands on the South-east coast of Western Australia, Camera Botanica 2 is a test of a new design methodology for achieving ecologically sustainable architecture in biodiverse, bushfire prone landscapes. ---------- The design method was intensively site-based with the author-designer conducting his own site surveys using high-end professional grade surveying equipment such as: Real Time Kinematic GPS (landform survey); Terrestrial laser scanning (vegetation survey); laser levelling and Total Station surveys (erection of scaffolds and contour lines). ---------- This was the first time, internationally, that terrestrial laser scanning was used to measure vegetation. These precise surveys enabled the construction of highly detailed models and drawings - a facility that has not been available prior to this technology. ---------- Designed for a real client and a real site - Camera Botanica 2 is a hypothetical design outcome which demonstrates the efficacy of a new design methodology and thus expands on knowledge of the applicability of new surveying technologies to the design of ecologically sustainable architecture in biodiverse landscapes.
Resumo:
Principal Topic: Project structures are often created by entrepreneurs and large corporate organizations to develop new products. Since new product development projects (NPDP) are more often situated within a larger organization, intrapreneurship or corporate entrepreneurship plays an important role in bringing these projects to fruition. Since NPDP often involves the development of a new product using immature technology, we describe development of an immature technology. The Joint Strike Fighter (JSF) F-35 aircraft is being developed by the U.S. Department of Defense and eight allied nations. In 2001 Lockheed Martin won a $19 billion contract to develop an affordable, stealthy and supersonic all-weather strike fighter designed to replace a wide range of aging fighter aircraft. In this research we define a complex project as one that demonstrates a number of sources of uncertainty to a degree, or level of severity, that makes it extremely difficult to predict project outcomes, to control or manage project (Remington & Zolin, Forthcoming). Project complexity has been conceptualized by Remington and Pollock (2007) in terms of four major sources of complexity; temporal, directional, structural and technological complexity (See Figure 1). Temporal complexity exists when projects experience significant environmental change outside the direct influence or control of the project. The Global Economic Crisis of 2008 - 2009 is a good example of the type of environmental change that can make a project complex as, for example in the JSF project, where project managers attempt to respond to changes in interest rates, international currency exchange rates and commodity prices etc. Directional complexity exists in a project where stakeholders' goals are unclear or undefined, where progress is hindered by unknown political agendas, or where stakeholders disagree or misunderstand project goals. In the JSF project all the services and all non countries have to agree to the specifications of the three variants of the aircraft; Conventional Take Off and Landing (CTOL), Short Take Off/Vertical Landing (STOVL) and the Carrier Variant (CV). Because the Navy requires a plane that can take off and land on an aircraft carrier, that required a special variant of the aircraft design, adding complexity to the project. Technical complexity occurs in a project using technology that is immature or where design characteristics are unknown or untried. Developing a plane that can take off on a very short runway and land vertically created may highly interdependent technological challenges to correctly locate, direct and balance the lift fans, modulate the airflow and provide equivalent amount of thrust from the downward vectored rear exhaust to lift the aircraft and at the same time control engine temperatures. These technological challenges make costing and scheduling equally challenging. Structural complexity in a project comes from the sheer numbers of elements such as the number of people, teams or organizations involved, ambiguity regarding the elements, and the massive degree of interconnectedness between them. While Lockheed Martin is the prime contractor, they are assisted in major aspects of the JSF development by Northrop Grumman, BAE Systems, Pratt & Whitney and GE/Rolls-Royce Fighter Engineer Team and innumerable subcontractors. In addition to identifying opportunities to achieve project goals, complex projects also need to identify and exploit opportunities to increase agility in response to changing stakeholder demands or to reduce project risks. Complexity Leadership Theory contends that in complex environments adaptive and enabling leadership are needed (Uhl-Bien, Marion and McKelvey, 2007). Adaptive leadership facilitates creativity, learning and adaptability, while enabling leadership handles the conflicts that inevitably arise between adaptive leadership and traditional administrative leadership (Uhl-Bien and Marion, 2007). Hence, adaptive leadership involves the recognition and opportunities to adapt, while and enabling leadership involves the exploitation of these opportunities. Our research questions revolve around the type or source of complexity and its relationship to opportunity recognition and exploitation. For example, is it only external environmental complexity that creates the need for the entrepreneurial behaviours, such as opportunity recognition and opportunity exploitation? Do the internal dimensions of project complexity, such as technological and structural complexity, also create the need for opportunity recognition and opportunity exploitation? The Kropp, Zolin and Lindsay model (2009) describes a relationship between entrepreneurial orientation (EO), opportunity recognition (OR), and opportunity exploitation (OX) in complex projects, with environmental and organizational contextual variables as moderators. We extend their model by defining the affects of external complexity and internal complexity on OR and OX. ---------- Methodology/Key Propositions: When the environment complex EO is more likely to result in OR because project members will be actively looking for solutions to problems created by environmental change. But in projects that are technologically or structurally complex project leaders and members may try to make the minimum changes possible to reduce the risk of creating new problems due to delays or schedule changes. In projects with environmental or technological complexity project leaders who encourage the innovativeness dimension of EO will increase OR in complex projects. But projects with technical or structural complexity innovativeness will not necessarily result in the recognition and exploitation of opportunities due to the over-riding importance of maintaining stability in the highly intricate and interconnected project structure. We propose that in projects with environmental complexity creating the need for change and innovation project leaders, who are willing to accept and manage risk, are more likely to identify opportunities to increase project effectiveness and efficiency. In contrast in projects with internal complexity a much higher willingness to accept risk will be necessary to trigger opportunity recognition. In structurally complex projects we predict it will be less likely to find a relationship between risk taking and OP. When the environment is complex, and a project has autonomy, they will be motivated to execute opportunities to improve the project's performance. In contrast, when the project has high internal complexity, they will be more cautious in execution. When a project experiences high competitive aggressiveness and their environment is complex, project leaders will be motivated to execute opportunities to improve the project's performance. In contrast, when the project has high internal complexity, they will be more cautious in execution. This paper reports the first stage of a three year study into the behaviours of managers, leaders and team members of complex projects. We conduct a qualitative study involving a Group Discussion with experienced project leaders. The objective is to determine how leaders of large and potentially complex projects perceive that external and internal complexity will influence the affects of EO on OR. ---------- Results and Implications: These results will help identify and distinguish the impact of external and internal complexity on entrepreneurial behaviours in NPDP. Project managers will be better able to quickly decide how and when to respond to changes in the environment and internal project events.
Resumo:
The Light of Gairdner 2 is a key work of the author's exhibition Lightsite, which toured Western Australian galleries from February 2006 to November 2007. It is a five-minute-long exposure photographic image captured inside a purpose-built, room-sized pinhole camera which is demountable and does not have a floor. The Light of Gairdner 2 depicts two brothers Allan and Harvey Lynch during their barley harvest. Allan is standing outside the pinhole camera-room in the barley field with their new 'CASE' harvester. The light from this exterior landscape is 'projected' inside the camera-room and illuminates the interior scene which includes that part of the barley field upon which the floorless room is erected, along with Harvey who is standing inside. The image evokes the temporality of light. Here, light itself is portrayed as the primary medium through which we both perceive and describe landscape. In this way it is through the agency of light that we construct our connectivity to landscape. The exhibition/catalogue statement. "Harvey and Allan Lynch lost their father Frank, in a crop dusting crash five years ago. They now manage their dad's 6000 acre farm and are photographed here at the time of their barley harvest. The Light of Gairdner 2 features their new 'CASE' harvester, and in the distance, the grain silos of Gairdner."
Resumo:
In the structure of the 1:1 proton-transfer compound of 4-methylpyridine (\g-picoline) with 4,5-dichlorophthalic acid, C6H8N+ C8H3Cl2O4- . H2O, determined at 200 K, the 4,5-dichlorophthalate anions are bridged by the water molecule through O--H...O~carboxyl~ hydrogen bonds, giving zig-zag chains which extend along the c axial direction of the unit cell. The 4-methylpyridine cations are linked to the chains through single N--H...O~water~ hydrogen bonds and occupy the voids within the chains in the one-dimensional structure. The anions have the common 'planar' conformation with the short intramolecular O--H...O(carboxyl) hydrogen bond.
Resumo:
The crystal structure of the 2:1 proton-transfer compound of brucine with biphenyl-4,4’-disulfonate, bis(2,3-dimethoxy-10-oxostrychnidinium) biphenyl-4,4'-disulfonate hexahydrate (1) has been determined at 173 K. Crystals are monoclinic, space group P21 with Z = 2 in a cell with a = 8.0314(2), b = 29.3062(9), c = 12.2625(3) Å, β = 101.331(2)o. The crystallographic asymmetric unit comprises two brucinium cations, a biphenyl-4,4'-disulfonate dianion and six water molecules of solvation. The brucinium cations form a variant of the common undulating and overlapping head-to-tail sheet sub-structure. The sulfonate dianions are also linked head-to-tail by hydrogen bonds into parallel zig-zag chains through clusters of six water molecules of which five are inter-associated, featuring conjoint cyclic eight-membered hydrogen-bonded rings [graph sets R33(8) and R34(8)], comprising four of the water molecules and closed by sulfonate O-acceptors. These chain structures occupy the cavities between the brucinium cation sheets and are linked to them peripherally through both brucine N+-H...Osulfonate and Ocarbonyl…H-Owater to sulfonate O bridging hydrogen bonds, forming an overall three-dimensional framework structure. This structure determination confirms the importance of water in the stabilization of certain brucine compounds which have inherent crystal instability.