926 resultados para 060801 Animal Behaviour
Resumo:
On Swiss rabbit breeding farms, group-housed does are usually kept singly for 12 days around parturition to avoid pseudograviclity, double litters and deleterious fighting for nests. After this isolation phase there is usually an integration of new group members. Here we studied whether keeping the group composition stable would reduce agonistic interactions, stress levels and injuries when regrouping after the isolation phase. Does were kept in 12 pens containing 8 rabbits each. In two trials, with a total of 24 groups, the group composition before and after the 12 days isolation period remained the same (treatment: stable, S) in 12 groups. In the other 12 groups two or three does were replaced after the isolation phase by unfamiliar does (treatment: mixed, M). Does of S-groups had been housed together for one reproduction cycle. One day before and on days 2, 4 and 6 after regrouping, data on lesions, stress levels (faecal corticosterone metabolites, FCM) and agonistic interactions were collected and statistically analysed using mixed effects models. Lesion scores and the frequency of agonistic interactions were highest on day 2 after regrouping and thereafter decrease in both groups. There was a trend towards more lesions in M-groups compared to S-groups. After regrouping FCM levels were increased in M-groups, but not in S-groups. Furthermore, there was a significant interaction of treatment and experimental day on agonistic interactions. Thus, the frequency of biting and boxing increased more in M-groups than in S-groups. These findings indicate that group stability had an effect on agonistic interactions, stress and lesions. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In studies assessing outdoor range use of laying hens, the number of hens seen on outdoor ranges is inversely correlated to flock size. The aim of this study was to assess individual ranging behavior on a covered (veranda) and an uncovered outdoor run (free-range) in laying hen flocks varying in size. Five to ten percent of hens (aged 9–15 months) within 4 small (2–2500 hens), 4 medium (5–6000), and 4 large (≥9000) commercial flocks were fitted with radio frequency identification (RFID) tags. Antennas were placed at both sides of all popholes between the house and the veranda and the veranda and the free-range. Ranging behavior was directly monitored for approximately three weeks in combination with hourly photographs of the free-range for the distribution of hens and 6h long video recordings on two parts of the free-range during two days. Between 79 and 99% of the tagged hens were registered on the veranda at least once and between 47 and 90% were registered on the free-range at least once. There was no association between the percentage of hens registered outside the house (veranda or free-range) and flock size. However, individual hens in small and medium sized flocks visited the areas outside the house more frequently and spent more time there than hens from large flocks. Foraging behavior on the free-range was shown more frequently and for a longer duration by hens from small and medium sized flocks than by hens from large flocks. This difference in ranging behavior could account for the negative relationship between flock size and the number of hens seen outside at one point of time. In conclusion, our work describes individual birds’ use of areas outside the house within large scale commercial egg production.
Resumo:
Laying hens in loose housing systems have access to group-nests which provide space for several hens at a time to lay their eggs. They are thus rather large and the trend in the industry is to further increase the size of these nests. Though practicality is important for the producer, group-nests should also cater to the egg-laying behaviour of hens to promote good welfare. One of the factors playing a role in the attractiveness of a nest is the amount of enclosure: hens prefer more enclosure when having a choice between different nest types. The aim of this study was to investigate if hens prefer smaller group-nests to lay their eggs given that they may seem more enclosed than larger nests. The relative preference of groups of laying hens for two nest sizes – 0.43m2 vs. 0.86m2 – was tested in a free-access choice test. The experiment was conducted in two consecutive trials with 100 hens each. They were housed from 18 to 36 weeks of age in five groups of 20 animals and had access to two commercial group-nests differing in internal size only. We counted eggs daily as a measure of nest preference. At 28 and 36 weeks of age, videos were taken of the pens and inside the nests on one day during the first 5h of lights-on. The nest videos were used to record the number of hens per nest and their behaviour with a 10min scan sampling interval. The pen videos were observed continuously to count the total number of nest visits per nest and to calculate the duration of nest visits of five focal hens per pen. We found a relative preference for the small nest as more eggs, fewer nest visits per egg and longer nest visit durations were recorded for that nest. In addition, more hens – including more sitting hens – were in the small nests during the main egg-laying period, while the number of standing hens did not differ. These observations indicate that even though both nests may have been explored to a similar extent, the hens preferred the small nest for egg-laying.
Resumo:
Non-cage housing systems for laying hens such as aviaries provide greater freedom to perform species-specific behavior and thus are thought to improve welfare of the birds; however, aviaries are associated with a high prevalence of keel bone damage (fractures and deviations), which is a major welfare problem in commercial laying hens. Potential causes of keel bone damage are falls and collisions with internal housing structures that occur as birds move between tiers or perches in the aviary. The aim of this study was to investigate the scope for reducing keel bone damage by reducing falls and collisions through modifications of aviary design. Birds were kept in 20 pens in a laying hen house (225 hens per pen) that were assigned to four different treatments (n = 5 pens per treatment group) including (1) control pens and pens modified by the addition of (2) perches, (3) platforms and (4) ramps. Video recordings at 19, 22, 29, 36 and 43 weeks of age were used to analyze controlled movements and falls (including details on occurrence of collision, cause of fall, height of fall and behavior after fall) during the transitional dusk and subsequent dark phase. Palpation assessments (focusing on fractures and deviations) using 20 focal hens per pen were conducted at 18, 20, 23, 30, 37, 44, 52 and 60 weeks of age. In comparison to the control group, we found 44% more controlled movements in the ramp (P = 0.003) and 47% more controlled movements in the platform treatments (P = 0.014) as well as 45% fewer falls (P = 0.006) and 59% fewer collisions (P < 0.001) in the ramp treatment. There were no significant differences between the control and perch treatments. Also, at 60 weeks of age, 23% fewer fractured keel bones were found in the ramp compared with the control treatment (P = 0.0053). After slaughter at 66 weeks of age, no difference in keel bone damage was found between treatment groups and the prevalence of fractures increased to an average of 86%. As a potential mechanism to explain the differences in locomotion, we suggest that ramps facilitated movement in the vertical plane by providing a continuous path between the tiers and thus supported more natural behavior (i.e. walking and running) of the birds. As a consequence of reducing events that potentially damage keel bones, the installation of ramps may have reduced the prevalence of keel fractures for a major portion of the flock cycle. We conclude that aviary design and installation of specific internal housing structures (i.e. ramps and platforms) have considerable potential to reduce keel bone damage of laying hens in aviary systems.
Resumo:
Behavioural field observations are increasingly being used in ecotoxicological research to identify potential adverse effects of exposure to persistent organic pollutants (POPs). We investigated thermal conditions inside the nest and parental behaviour of glaucous gulls, Larus hyperboreus, breeding in the Norwegian Arctic in relation to the concentrations of major classes of POPs (organochlorines, brominated flame retardants and metabolically derived products) accumulated in their blood. Most notably, nest temperature was negatively correlated with the concentrations of the sum of DDT, sum of PCB and several quantitatively minor POP classes within the incubating parent. To investigate the relationship between incubation ability and parental POP exposure further, we experimentally increased the costs of incubation by artificially increasing the clutch size from two to four eggs. Clutch enlargement was followed by a decrease in nest temperature, but this drop in temperature was not associated with POP concentrations within the incubating parent. However, males, which had higher POP concentrations and lower white blood cell counts than females, seemed less able to maintain nest temperature. There was virtually no evidence to suggest that the sum of PCB or DDT were associated with changes in the time a bird spent incubating. However, there was some indication that nest site attendance by nonincubating males was negatively related to the sum of DDT, suggesting that nest protection may have been compromised. The results suggest that adverse effects of parental POP exposure may occur through suboptimal thermal conditions for embryo development and possibly increased egg predation risk.