990 resultados para walking capacity
Resumo:
Sessional Academics enhance students’ learning experience by bringing a diverse range of perspectives and expertise into the classroom. As industry specialists, research students, and recent graduates who have excelled in their courses, they complement the discipline expertise of career academics. With increasing casualization of the academic workforce, Sessional Academics now deliver the majority of face-to-face undergraduate teaching in Australian Universities. To enable them to realize their full potential as effective contributors to student learning and course quality, universities need to offer effective training and access to advice and support and facilitate engagement in university life. However, in the face of complex and diverse contexts, overwhelming numbers, and the transitory nature of sessional cohorts, few universities have developed a comprehensive, systematic approach. During the past three years at QUT, we have set out to develop a multifaceted approach to Sessional Academic support and development. In this paper I will explain why and how we have done so, and describe the range of strategies and programs we have developed. They include a central academic development program, which is structured and scaffolded with learning objectives and outcomes, and aligned with a graduate certificate in Academic Practice; a Sessional Academic Success program, which deploys experienced, school-based sessional academic success advisors to provide local support, build a sense of community, and offer discipline focused academic development; an online, dialogic communication strategy; and opportunities to present and be acknowledged for good learning and teaching practices. Together, these strategies have impacted on sessional academics’ confidence, learning and teaching capacity, reflection and engagement.
Resumo:
In-plane shear capacity formulation of reinforced masonry is commonly conceived as the sum of the capacities of three parameters, viz, the masonry, the reinforcement, and the precompression. The term “masonry” incorporates the aspect ratio of the wall without any regard to the aspect ratio of the panels inscribed (and hence confined) by the vertical and the horizontal reinforced grout cores. This paper proposes design expressions in which the aspect ratio of such panels is explicitly included. For this purpose, the grouted confining cores are regarded as a grid of confining elements within which the panels are positioned. These confined masonry panels are then considered as building blocks for multi-bay, multi-storied confined masonry shear walls and analyzed using an experimentally validated macroscopic finite-element model. Results of the analyzes of 161 confined masonry walls containing panels of height to length ratio less than 1.0 have been regressed to formulate design expressions. These expressions have been first validated using independent test data sets and then compared with the existing equations in some selected international design standards. The concept of including the unreinforced masonry panel aspect ratio as an additional term in the design expression for partially grouted/confined masonry shear walls is recommended based on the conclusions from this paper.
Resumo:
Bearing failure is a form of localized failure that occurs when thin-walled cold-formed steel sections are subjected to concentrated loads or support reactions. To determine the bearing capacity of cold-formed channel sections, a unified design equation with different bearing coefficients is given in the current North American specification AISI S100 and the Australian/New Zealand standard AS/NZS 4600. However, coefficients are not available for unlipped channel sections that are normally fastened to supports through their flanges. Eurocode 3 Part 1.3 includes bearing capacity equations for different load cases, but does not distinguish between fastened and unfastened support conditions. Therefore, an experimental study was conducted to determine the bearing capacities of these sections as used in floor systems. Twenty-eight web bearing tests on unlipped channel sections with restrained flanges were conducted under End One Flange (EOF) and Interior One Flange (IOF) load cases. Using the results from this study, a new equation was proposed within the AISI S100 and AS/NZS 4600 guidelines to determine the bearing capacities of cold-formed unlipped channels with flanges fastened to supports. A new design rule was also proposed based on the direct strength method.
Resumo:
Access to energy is a fundamental component of poverty abatement. People who live in homes without electricity are often dependent on dirty, time-consuming and disproportionately expensive solid fuel sources for heating and cooking. [1] In developing countries, the Human Development Index (HDI), which comprises measures of standard of living, longevity and educational attainment, increases rapidly with per capita electricity use. [2] For these reasons the United Nations has been making a concerted effort to promote global access to energy, first by naming 2012 the Year of Sustainable Energy for All, [3] and now by declaring 2014-2024 the Decade of Sustainable Energy for All. [4]
Resumo:
Ce1-xSnxO2 (x = 0.1-0.5) solid solution and its Pd substituted analogue have been prepared by a single step solution combustion method using tin oxalate precursor. The compounds were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and H-2/temperature programmed redution (TPR) studies. The cubic fluorite structure remained intact up to 50% of Sri substitution in CeO2, and the compounds were stable up to 700 C. Oxygen storage capacity of Ce1-xSnxO2 was found to be much higher than that of Ce1-xZrxO2 due to accessible Ce4+/Ce3+ and Sn4+/Sn2+ redox couples at temperatures between 200 and 400 C. Pd 21 ions in Ce0.78Sn0.2Pd0.02O2-delta are highly ionic, and the lattice oxygen of this catalyst is highly labile, leading to low temperature CO to CO2 conversion. The rate of CO oxidation was 2 mu mol g(-1) s(-1) at 50 degrees C. NO reduction by CO with 70% N-2 selectivity was observed at similar to 200 degrees C and 100% N-2 selectivity below 260 degrees C with 1000-5000 ppm NO. Thus, Pd2+ ion substituted Ce1-xSnxO2 is a superior catalyst compared to Pd2+ ions in CeO2, Ce1-xZrxO2, and Ce1-xTixO2 for low temperature exhaust applications due to the involvement of the Sn2+/Sn4+ redox couple along with Pd2+/Pd-0 and Ce4+/Ce3+ couples.
Resumo:
REVIEW QUESTION/OBJECTIVE The quantitative objectives are to identify the impact of curative colorectal cancer treatment (surgery or adjuvant therapy) on physical activity, functional status and quality of life within one year of treatment or diagnosis. INCLUSION CRITERIA Types of participants: This review will consider studies that include individuals aged 18 years and over who have been diagnosed with colorectal cancer. Types of intervention(s)/phenomena of interest: This review will consider studies that evaluate the impact of curative colorectal cancer treatment: surgery and/or adjuvant therapy. Types of outcomes: This review will consider studies that include the following outcome measures assessed within one year of diagnosis or treatment: Physical activity - any bodily movement produced by skeletal muscles resulting in energy expenditure. Physical activity is not exclusive to exercise; activities can also be walking, housework, occupational or leisure. Physical activity can be measured objectively using pedometers or accelerometers, or subjectively using self-reported measures. Functional status – measured as the capacity to perform all activities of daily living such as walking, showering, and eating; and instrumental activities of daily living such as (but not limited to) grocery shopping, housekeeping and laundry. Quality of life – defined as the individual meaning of mental, physical and psychosocial wellbeing, as measured by validated tools such as SF-36, EORTC-QLQ-C30, or FACT-C.
Resumo:
The potential benefits of providing geocell reinforced sand mattress over clay subgrade with void have been investigated through a series of laboratory scale model tests. The parameters varied in the test programme include, thickness of unreinforced sand layer above clay bed, width and height of geocell mattress, relative density of the sand fill in the geocells, and influence of an additional layer of planar geogrid placed at the base of the geocell mattress. The test results indicate that substantial improvement in performance can be obtained with the provision of geocell mattress, of adequate size, over the clay subgrade with void. In order to have beneficial effect, the geocell mattress must spread beyond the void at least a distance equal to the diameter of the void. The influence of the void over the performance of the footing reduces for height of geocell mattress greater than 1.8 times the diameter of the footing. Better improvement in performance is obtained for geocells filled with dense soil. (C) 2008 Elsevier Ltd. All rights reserved.
Pedestrian self-reported exposure to distraction by smart phones while walking and crossing the road
Resumo:
Pedestrian crashes account for approximately 14% of road fatalities in Australia. Crossing the road, while a minor part of total walking, presents the highest crash risk because of potential interaction with motor vehicles. Crash risk is elevated by pedestrian illegal use of the road, which may be widespread (e.g. 20% of crossings at signalised intersections at a sample of sites, Brisbane) and enforcement is rare. Effective road crossing requires integration of multiple skills and judgements, any of which can be hindered by distraction. Observational studies suggest that pedestrians are increasingly likely to ‘multitask’, using mobile technology for entertainment and communication, elevating the risk of distraction while crossing. To investigate this, intercept interviews were conducted with a convenience sample of 211 pedestrians aged 18-65 years in Brisbane CBD. Self-reported frequency of using a smart phone for activities at two levels of distraction: cognitive only (voice calls); or cognitive and visual (text messages, internet access) while walking or crossing the road was collected. Results indicated that smart phone use for potentially distracting activities while walking and while crossing the road was high, especially among 18-30 year olds, who were significantly more likely than 31-44yo or 45-65yo to report smart phone use while crossing the road. For 18-30yo and the higher risk activity of crossing the road, 32% texted at high frequency levels and 27% used internet at high frequency levels. Risky levels of distracted crossing appear to be a growing safety issue for 18-30yo, with greater attention to appropriate interventions needed.
Resumo:
Analytical techniques for measuring and planning railway capacity expansion activities have been considered in this article. A preliminary mathematical framework involving track duplication and section sub divisions is proposed for this task. In railways these features have a great effect on network performance and for this reason they have been considered. Additional motivations have also arisen from the limitations of prior models that have not included them.
Resumo:
This article focusses upon multi-modal transportation systems (MMTS) and the issues surrounding the determination of system capacity. For that purpose a multi-objective framework is advocated that integrates all the different modes and many different competing capacity objectives. This framework is analytical in nature and facilitates a variety of capacity querying and capacity expansion planning.
Resumo:
Electrochemical capacity retention of nearly X-ray amorphous nanostructured manganese oxide (nanoMnO2) synthesized by mixing directly KMnO4 with ethylene glycol under ambient conditions for supercapacitor studies is enhanced significantly. Although X-ray diffraction (XRD) pattern of nanoMnO2 shows poor crystallinity, it is found that by Mn K-edge X-ray absorption near edge structure (XANES) measurement that the nanoMnO2 obtained is locally arranged in a δ-MnO2-type layered structure composed of edge-shared network of MnO6 octahedra. Field emission scanning electron microscopy and XANES measurements show that nanoMnO2 contains nearly spherical shaped morphology with δ-MnO2 structure, and 1D nanorods of α-MnO2 type structure (powder XRD) in the annealed (600 °C) sample. Volumetric nitrogen adsorption−desorption isotherms, inductively coupled plasma analysis, and thermal analysis are carried out to obtain physicochemical properties such as surface area (230 m2 g−1), porosity of nanoMnO2 (secondary mesopores of diameter 14.5 nm), water content, composition, etc., which lead to the promising electrochemical properties as an electrode for supercapacitor. The nanoMnO2 shows a very high stability even after 1200 cycles with capacity retention of about 250 F g−1.
Resumo:
This study investigates the potential of Relevance Vector Machine (RVM)-based approach to predict the ultimate capacity of laterally loaded pile in clay. RVM is a sparse approximate Bayesian kernel method. It can be seen as a probabilistic version of support vector machine. It provides much sparser regressors without compromising performance, and kernel bases give a small but worthwhile improvement in performance. RVM model outperforms the two other models based on root-mean-square-error (RMSE) and mean-absolute-error (MAE) performance criteria. It also stimates the prediction variance. The results presented in this paper clearly highlight that the RVM is a robust tool for prediction Of ultimate capacity of laterally loaded piles in clay.
Resumo:
Background The Circle of Willis (CoW) is the most important collateral pathway of the cerebral artery. The present study aims to investigate the collateral capacity of CoW with anatomical variation when unilateral internalcarotid artery (ICA) is occluded. Methods Basing on MRI data, we have reconstructed eight 3D models with variations in the posterior circulation of the CoW and set four different degrees of stenosis in the right ICA, namely 24%, 43%, 64% and 79%, respectively. Finally, a total of 40 models are performed with computational fluid dynamics simulations. All of the simulations share the same boundary condition with static pressure and the volume flow rate (VFR) are obtained to evaluate their collateral capacity. Results As for the middle cerebral artery (MCA) and the anterior cerebral artery (ACA), the transitional-type model possesses the best collateral capacity. But for the posterior cerebral artery (PCA), unilateral stenosis of ICA has the weakest influence on the unilateral posterior communicating artery (PCoA) absent model. We also find that the full fetal-type posterior circle of Willis is an utmost dangerous variation which must be paid more attention. Conclusion The results demonstrate that different models have different collateral capacities in coping stenosis of unilateral ICA and these differences can be reflected by different outlets. The study could be used as a reference for neurosurgeon in choosing the best treatment strategy.
Resumo:
Foot plantar fascia is an important foot tissue in stabilizing the longitudinal arch of human foot. Direct measurement to monitor the mechanical situation of plantar fascia at human locomotion is difficult. The purpose of this study was to construct a three-dimensional finite element model of the foot to calculate the internal stress/strain value of plantar fascia during different stage of gait. The simulated stress distribution of plantar fascia was the lowest at heel-strike, which concentrated on the medial side of calcaneal tubercle. The peak stress of plantar fascia was appeared at push-off, and the value is more than 5 times of the heel-strike position. Current FE model was able to explore the plantar fascia tension trend at the main sub-phases of foot. More detailed fascia model and intrinsic muscle forces could be developed in the further study.