1000 resultados para waiting point nuclei
Resumo:
We show that the density of eigenvalues for three classes of random matrix ensembles is determinantal. First we derive the density of eigenvalues of product of k independent n x n matrices with i.i.d. complex Gaussian entries with a few of matrices being inverted. In second example we calculate the same for (compatible) product of rectangular matrices with i.i.d. Gaussian entries and in last example we calculate for product of independent truncated unitary random matrices. We derive exact expressions for limiting expected empirical spectral distributions of above mentioned ensembles.
Resumo:
A new approach is proposed to estimate the thermal diffusivity of optically transparent solids at ambient temperature based on the velocity of an effective temperature point (ETP), and by using a two-beam interferometer the proposed concept is corroborated. 1D unsteady heat flow via step-temperature excitation is interpreted as a `micro-scale rectilinear translatory motion' of an ETP. The velocity dependent function is extracted by revisiting the Fourier heat diffusion equation. The relationship between the velocity of the ETP with thermal diffusivity is modeled using a standard solution. Under optimized thermal excitation, the product of the `velocity of the ETP' and the distance is a new constitutive equation for the thermal diffusivity of the solid. The experimental approach involves the establishment of a 1D unsteady heat flow inside the sample through step-temperature excitation. In the moving isothermal surfaces, the ETP is identified using a two-beam interferometer. The arrival-time of the ETP to reach a fixed distance away from heat source is measured, and its velocity is calculated. The velocity of the ETP and a given distance is sufficient to estimate the thermal diffusivity of a solid. The proposed method is experimentally verified for BK7 glass samples and the measured results are found to match closely with the reported value.
Resumo:
Acoustic feature based speech (syllable) rate estimation and syllable nuclei detection are important problems in automatic speech recognition (ASR), computer assisted language learning (CALL) and fluency analysis. A typical solution for both the problems consists of two stages. The first stage involves computing a short-time feature contour such that most of the peaks of the contour correspond to the syllabic nuclei. In the second stage, the peaks corresponding to the syllable nuclei are detected. In this work, instead of the peak detection, we perform a mode-shape classification, which is formulated as a supervised binary classification problem - mode-shapes representing the syllabic nuclei as one class and remaining as the other. We use the temporal correlation and selected sub-band correlation (TCSSBC) feature contour and the mode-shapes in the TCSSBC feature contour are converted into a set of feature vectors using an interpolation technique. A support vector machine classifier is used for the classification. Experiments are performed separately using Switchboard, TIMIT and CTIMIT corpora in a five-fold cross validation setup. The average correlation coefficients for the syllable rate estimation turn out to be 0.6761, 0.6928 and 0.3604 for three corpora respectively, which outperform those obtained by the best of the existing peak detection techniques. Similarly, the average F-scores (syllable level) for the syllable nuclei detection are 0.8917, 0.8200 and 0.7637 for three corpora respectively. (C) 2016 Elsevier B.V. All rights reserved.
Resumo:
A two-point closure strategy in mapping closure approximation (MCA) approach is developed for the evolution of the probability density function (PDF) of a scalar advected by stochastic velocity fields. The MCA approach is based on multipoint statistics. We formulate a MCA modeled system using the one-point PDFs and two-point correlations. The MCA models can describe both the evolution of the PDF shape and the rate at which the PDF evolves.
Resumo:
基于管道微单元体平衡建立了海管单点提升的非线性力学模型的控制微分方程组,使用变弧长的无量纲代换将动边界问题化为固定边界的两点边值问题,利用maple环境下编制的两点边值问题的打靶法程序得到了该问题在各个提升阶段的数值解答和在单点提升过程中管道的极限弯矩约为0.71q~{1/3}(EI)~{2/3}。
Resumo:
By using Lagrangian method, the flow properties of a dusty-gas point source in a supersonic free stream were studied and the particle parameters in the near-symmetry-axis region were obtained. It is demonstrated that fairly inertial particles travel along oscillating and intersecting trajectories between the bow and termination shock waves. In this region,formation of "multi-layer structure" in particle distribution with alternating low- and highdensity layers is revealed. Moreover, sharp accumulation of particles occurs near the envelopes of particle trajectories.
Resumo:
The dynamic micro-deformation of the specimen under laser point source is measured using a laser beam reflex amplifier system and numerically simulated by Msc.Marc software. Compared with experimental result and calculated result, the final deformation direction of the specimen depends on the result of the thermal strain and the phase transformation strain cooperation, away from the laser beam or towards the laser beam, the final deformation angle depends on temperature gradient in the thickness direction and the geometry constraint of the specimen. The conclusion lays the foundation for further research on the mechanism of laser bending. At the same time, it is proposed that the model of calculation based on classical Fourier heat transfer theory cannot be enough to simulate the dynamic micro-deformation of the specimen under laser point source, the model of calculation should be modified in the future.
Resumo:
By using the kernel function of the smoothed particle hydrodynamics (SPH) and modification of statistical volumes of the boundary points and their kernel functions, a new version of smoothed point method is established for simulating elastic waves in solid. With the simplicity of SPH kept, the method is easy to handle stress boundary conditions, especially for the transmitting boundary condition. A result improving by de-convolution is also proposed to achieve high accuracy under a relatively large smooth length. A numerical example is given and compared favorably with the analytical solution.
Resumo:
We investigate the transient ventilation flow within a confined ventilated space, with high- and low-level openings, when the strength of a low-level point source of heat is changed instantaneously. The steady-flow regime in the space involves a turbulent buoyant plume, which rises from the point source to a well-mixed warm upper layer. The steady-state height of the interface between this layer and the lower layer of exterior fluid is independent of the heat flux, but the upper layer becomes progressively warmer with heat flux. New analogue laboratory experiments of the transient adjustment between steady states identify that if the heat flux is increased, the continuing plume propagates to the top of the room forming a new, warmer layer. This layer gradually deepens, and as the turbulent plume entrains fluid from the original warm layer, the original layer is gradually depleted and disappears, and a new steady state is established. In contrast, if the source buoyancy flux is decreased, the continuing plume is cooler than the original plume, so that on reaching the interface it is of intermediate density between the original warm layer and the external fluid. The plume supplies a new intermediate layer, which gradually deepens with the continuing flow. In turn, the original upper layer becomes depleted, both as a result of being vented through the upper opening of the space, but also due to some penetrative entrainment of this layer by the plume, as the plume overshoots the interface before falling back to supply the new intermediate layer. We develop quantitative models which are in good accord with our experimental data, by combining classical plume theory with models of the penetrative entrainment for the case of a decrease in heating. Typically, we find that the effect of penetrative entrainment on the density of the intruding layer is relatively weak, provided the change in source strength is sufficiently large. However, penetrative entrainment measurably increases the rate at which the depth of the draining layer decreases. We conclude with a discussion of the importance of these results for the control of naturally ventilated spaces.
Resumo:
Computer generated holography is an extremely demanding and complex task when it comes to providing realistic reconstructions with full parallax, occlusion, and shadowing. We present an algorithm designed for data-parallel computing on modern graphics processing units to alleviate the computational burden. We apply Gaussian interpolation to create a continuous surface representation from discrete input object points. The algorithm maintains a potential occluder list for each individual hologram plane sample to keep the number of visibility tests to a minimum.We experimented with two approximations that simplify and accelerate occlusion computation. It is observed that letting several neighboring hologramplane samples share visibility information on object points leads to significantly faster computation without causing noticeable artifacts in the reconstructed images. Computing a reduced sample set via nonuniform sampling is also found to be an effective acceleration technique. © 2009 Optical Society of America.
Resumo:
Sandwich beams comprising identical face sheets and a square honeycomb core were manufactured from carbon fiber composite sheets. Analytical expressions were derived for four competing collapse mechanisms of simply supported and clamped sandwich beams in three-point bending: core shear, face microbuckling, face wrinkling, and indentation. Selected geometries of sandwich beams were tested to illustrate these collapse modes, with good agreement between analytic predictions and measurements of the failure load. Finite element (FE) simulations of the three-point bending responses of these beams were also conducted by constructing a FE model by laying up unidirectional plies in appropriate orientations. The initiation and growth of damage in the laminates were included in the FE calculations. With this embellishment, the FE model was able to predict the measured load versus displacement response and the failure sequence in each of the composite beams. © 2011 American Society of Mechanical Engineers.
Resumo:
Conferencia dictada el día miércoles 8 de agosto de 2012 como parte de la Cátedra Konrad Adenauer, “Escuela de Economía Francisco Valsecchi” de la Pontificia Universidad Católica Argentina (UCA).