978 resultados para volume regulation
Resumo:
Background: Angiogenesis may play a role in the pathogenesis of Non-Small Cell Lung cancer (NSCLC). The CXC (ELR+) chemokine family are powerful promoters of the angiogenic response. Methods: The expression of the CXC (ELR+) family members (CXCL1-3/GROα-γ, CXCL8/IL-8, CXCR1/2) was examined in a series of resected fresh frozen NSCLC tumours. Additionally, the expression and epigenetic regulation of these chemokines was examined in normal bronchial epithelial and NSCLC cell lines. Results: Overall, expression of the chemokine ligands (CXCL1, 2, 8) and their receptors (CXCR1/2) were down regulated in tumour samples compared with normal, with the exception of CXCL3. CXCL8 and CXCR1/2 were found to be epigenetically regulated by histone post-translational modifications. Recombinant CXCL8 did not stimulate cell growth in either a normal bronchial epithelial or a squamous carcinoma cell line (SKMES-1). However, an increase was observed at 72 hours post treatment in an adenocarcinoma cell line. Conclusions: CXC (ELR+) chemokines are dysregulated in NSCLC. The balance of these chemokines may be critical in the tumour microenvironment and requires further elucidation. It remains to be seen if epigenetic targeting of these pathways is a viable therapeutic option in lung cancer treatment. © 2011 Baird et al.
Resumo:
It is certain that there will be changes in environmental conditions across the globe as a result of climate change. Such changes will require the building of biological, human and infrastructure resilience. In some instances, the building of such resilience will be insufficient to deal with extreme changes in environmental conditions and legal frameworks will be required to provide recognition and support for people relocating as a result of environmental change. International legal frameworks do not currently recognise or assist people displaced as a result of environmental factors. The objective of this chapter is to examine the areas of international law relevant to displacement arising from environmental factors, consider some of the proposed climate displacement instruments and suggest the most suitable international institution to host a program addressing climate displacement. In order to determine the most appropriate institution to address and regulate climate displacement, it is imperative to consider issues of governance. This paper seeks to examine this issue and determine whether it is preferable to place climate displacement programs into existing international legal frameworks, or whether it is necessary to regulate this area in an entirely new institution specifically designed to deal with the complex and cross-cutting issues surrounding the topic...
Resumo:
BACKGROUND: Prostacyclin synthase (PGIS) metabolizes prostaglandin H(2), into prostacyclin. This study aimed to determine the expression profile of PGIS in nonsmall cell lung cancer (NSCLC) and examine potential mechanisms involved in PGIS regulation. METHODS: PGIS expression was examined in human NSCLC and matched controls by reverse transcriptase polymerase chain reaction (RT-PCR), Western analysis, and immunohistochemistry. A 204-patient NSCLC tissue microarray was stained for PGIS and cyclooxygenase 2 (COX2) expression. Staining intensity was correlated with clinical parameters. Epigenetic mechanisms underpinning PGIS promoter expression were examined using RT-PCR, methylation-specific PCR, and chromatin immunoprecipitation analysis. RESULTS: PGIS expression was reduced/absent in human NSCLC protein samples (P <.0001), but not mRNA relative to matched controls. PGIS tissue expression was higher in squamous cell carcinoma (P =.004) and in male patients (P <.05). No significant correlation of PGIS or COX2 expression with overall patient survival was observed, although COX2 was prognostic for short-term (2-year) survival (P <.001). PGIS mRNA expression was regulated by DNA CpG methylation and histone acetylation in NSCLC cell lines, with chromatin remodeling taking place directly at the PGIS gene. PGIS mRNA expression was increased by both demethylation agents and histone deacetylase inhibitors. Protein levels were unaffected by demethylation agents, whereas PGIS protein stability was negatively affected by histone deacetylase inhibitors. CONCLUSIONS: PGIS protein expression is reduced in NSCLC, and does not correlate with overall patient survival. PGIS expression is regulated through epigenetic mechanisms. Differences in expression patterns between mRNA and protein levels suggest that PGIS expression and protein stability are regulated post-translationally. PGIS protein stability may have an important therapeutic role in NSCLC. © 2011 American Cancer Society.
Resumo:
Aims and objectives. To present a novel approach to nurse stress by exploring the demand–control–support model with organisational justice through the lens of relational regulation theory. Background. Nursing is often stressful due to high demands and dissatisfaction with pay, which impacts the mental well-being and productivity of nurses. Design. A cross-sectional design. Methods. A validated questionnaire was sent to the work addresses of all nursing and midwifery staff in a medium-sized general acute hospital in Australia. A total of 190 nurses and midwives returned completed questionnaires for the analyses. Results. The multiple regression analyses demonstrated that the model applies to the prototypical context of a general acute hospital and that job control, supervisor support and outside work support improve the job satisfaction and mental health of nurses. Conclusions. Most importantly, supervisor support was found to buffer the impact of excessive work demands. Fairness of procedures, distribution of resources and the quality and consistency of information are also beneficial. Relational regulation theory is applied to these findings as a novel way to conceptualise the mechanisms of support and fairness in nursing. Relevance to clinical practice. The importance of nurses’ well-being and job satisfaction is a priority for improving clinical outcomes. Practically, this means nurse managers should be encouraging nurses in the pursuit of diverse relational activities both at work and outside work.
Resumo:
Background: Cyclooxygenase (COX)-2 is frequently overexpressed in non-small cell lung cancer (NSCLC) and results in increased levels of prostaglandin E2 (PGE 2), an important signalling molecule implicated in tumourigenesis. PGE 2 exerts its effects through the E prostanoid (EP) receptors (EPs1-4). Methods: The expression and epigenetic regulation of the EPs were evaluated in a series of resected fresh frozen NSCLC tumours and cell lines. Results: EP expression was dysregulated in NSCLC being up and downregulated compared to matched control samples. For EPs1, 3 and 4 no discernible pattern emerged. EP2 mRNA however was frequently downregulated, with low levels being observed in 13/20 samples as compared to upregulation in 5/20 samples examined. In NSCLC cell lines DNA CpG methylation was found to be important for the regulation of EP3 expression, the demethylating agent decitabine upregulating expression. Histone acetylation was also found to be a critical regulator of EP expression, with the histone deacteylase inhibitors trichostatin A, phenylbutyrate and suberoylanilide hydroxamic acid inducing increased expression of EPs2-4. Direct chromatin remodelling was demonstrated at the promoters for EPs2-4. Conclusions: These results indicate that EP expression is variably altered from tumour to tumour in NSCLC. EP2 expression appears to be predominantly downregulated and may have an important role in the pathogenesis of the disease. Epigenetic regulation of the EPs may be central to the precise role COX-2 may play in the evolution of individual tumours. © 2009 Elsevier Ltd. All rights reserved.
Resumo:
The insulin-receptor substrate family plays important roles in cellular growth, signaling, and survival. Two new members of this family have recently been isolated: IRS5/Dok4 and IRS6/Dok5. This study examines the expression of IRS5/DOK4 in a panel of lung cancer cell lines and tumor specimens. The results demonstrate that expression of IRS5/DOK4 is frequently altered with both elevated and decreased expression in non-small-cell lung cancer (NSCLC) tumor specimens. The altered expression of IRS5/DOK4 observed in tumor samples is not due to aberrant methylation. In vitro cell culture studies demonstrate that treatment of NSCLC cell lines with the histone deacetylase inhibitor trichostatin A (TSA) upregulates IRS5/DOK4. This finding indicates that expression is regulated epigenetically at the level of chromatin remodeling. Chromatin immunoprecipitation experiments confirm that the IRS5/DOK4 promoter has enhanced histone hyperacetylation following treatments with TSA. Finally, hypoxia was demonstrated to downregulate IRS5/DOK4 expression. This expression was restored by TSA. The clinical relevance of altered IRS5/DOK4 expression in NSCLC requires fur ther evaluation.
Resumo:
Tumour angiogenesis has been recently recognised as one of the most important prognostic factors in lung cancer. Although a variety of angiogenic factors have been identified, the angiogenesis process remains poorly understood. Bcl-2, c-erbB-2 and p53 are well-known oncogenes involved in non- small-cell lung cancer pathogenesis. A direct correlation of thymidine phosphorylase (TP) and of vascular endothelial growth factor (VEGF) with intratumoural angiogenesis has been reported. In the present study we investigated the possible regulatory role if bcl-2, c-erB-2 proteins in angiogenesis and in VEGF and TP expression in non-small-cell lung cancer. Two hundred sixteen specimens from T1,2-NO, 1 staged patients treated with surgery alone were immunohistochemically examined. Bcl-2 and c-erbB-2 were significantly inversely related to each other (P = 0.04) and both were inversely associated with microvessel density (P < 0.02). High TP and VEGF reactivity was statistically related to loss of bcl-2 expression (P < 0.01). A significant co-expression of c-erbB-2 with TP was noted (P = 0.01). However, TP expression was related to high angiogenesis only in cases with absence of c-erB-2 expression (P < 0.0001). c-erbB-2 expression in poorly vascularised tumours was linked with poor outcome (P = 0.03). The present study provides strong evidence that the bcl-2 gene has a suppressive function over genes involved in both angiogenesis (VEGF and TP) and cell migration (c- erbB-2) in NSCLC. TP and c-erbB-2 proteins are significantly, and often simultaneously, expressed in bcl-2 negative cases. However, expression of the c-erbB-2 abolishes the TP-related angiogenic activity. Whether this is a result of a direct activity of the c-erbB-2 protein or a consequence of a c- erbB-2-related immune response remains to be further investigated.
Resumo:
Due to their inherently hypoxic environment, cancer cells often resort to glycolysis, or the anaerobic breakdown of glucose to form ATP to provide for their energy needs, known as the Warburg effect. At the same time, overexpression of the insulin receptor in non-small cell lung cancer (NSCLC) is associated with an increased risk of metastasis and decreased survival. The uptake of glucose into cells is carried out via glucose transporters or GLUTs. Of these, GLUT-4 is essential for insulin-stimulated glucose uptake. Following treatment with the epigenetic targeting agents histone deacetylase inhibitors (HDACi), GLUT-3 and GLUT-4 expression were found to be induced in NSCLC cell lines, with minimal responses in transformed normal human bronchial epithelial cells (HBECs). Similar results for GLUT-4 were observed in cells derived from liver, muscle, kidney and pre-adipocytes. Bioinformatic analysis of the promoter for GLUT-4 indicates that it may also be regulated by several chromatin binding factors or complexes including CTCF, SP1 and SMYD3. Chromatin immunoprecipitation studies demonstrate that the promoter for GLUT-4 is dynamically remodeled in response to HDACi. Overall, these results may have value within the clinical setting as (a) it may be possible to use this to enhance fluorodeoxyglucose (18F) positron emission tomography (FDG-PET) imaging sensitivity; (b) it may be possible to target NSCLC through the use of HDACi and insulin mediated uptake of the metabolic targeting drugs such as 2-deoxyglucose (2-DG); or (c) enhance or sensitize NSCLC to chemotherapy. © 2011 by the authors; licensee MDPI, Basel, Switzerland.
Resumo:
The refereed papers contained in this set of conference proceedings were presented at the 2nd International Conference on Crime, Justice and Social Democracy, hosted by the Crime and Justice Research Centre, Faculty of Law, QUT. The conference attracted an impressive list of internationally distinguished keynote and panel speakers from the United Kingdom, United States, Australia, New Zealand, Canada and this time Latin America, as well as high quality paper submissions.
Resumo:
Objective: Modern series from high-volume esophageal centers report an approximate 40% 5-year survival in patients treated with curative intent and postoperative mortality rates of less than 4%. An objective analysis of factors that underpin current benchmarks within high-volume centers has not been performed. Methods: Three time periods were studied, 1990 to 1998 (period 1), 1999 to 2003 (period 2), and 2004 to 2008 (period 3), in which 471, 254, and 342 patients, respectively, with esophageal cancer were treated with curative intent. All data were prospectively recorded, and staging, pathology, treatment, operative, and oncologic outcomes were compared. Results: Five-year disease-specific survival was 28%, 35%, and 44%, and in-hospital postoperative mortality was 6.7%, 4.4%, and 1.7% for periods 1 to 3, respectively (P < .001). Period 3, compared with periods 1 and 2, respectively, was associated with significantly (P < .001) more early tumors (17% vs 4% and 6%), higher nodal yields (median 22 vs 11 and 18), and a higher R0 rate in surgically treated patients (81% vs 73% and 75%). The use of multimodal therapy increased (P < .05) across time periods. By multivariate analysis, age, T stage, N stage, vascular invasion, R status, and time period were significantly (P < .0001) associated with outcome. Conclusions: Improved survival with localized esophageal cancer in the modern era may reflect an increase of early tumors and optimized staging. Important surgical and pathologic standards, including a higher R0 resection rate and nodal yields, and lower postoperative mortality, were also observed. Copyright © 2012 by The American Association for Thoracic Surgery.
Resumo:
Most civil engineering structures are formed using a number of materials that are bonded to each other with their surface-to-surface interaction playing key role on the overall response of the structure. Unfortunately these interactions are extremely variable; simplified and extremely detailed models trialed to date prove quite complex. Models that assume perfect interaction, on the other hand, predict unsafe behavior. In this paper a damage mechanics based interaction between two materials of different softening properties is developed using homogenisation approach. This paper describes the process of developing a bi-material representative volume element (RVE) using damaged homogenisation approach. The novelty in this paper is the development of non-local transient damage identification algorithm. Numerical examples prove the stability of the approach for a simplified RVE and encourage application to other shapes of RVEs.
Resumo:
White light strongly promotes dormancy in freshly harvested cereal grains, whereas dark and after-ripening have the opposite effect. We have analyzed the interaction of light and after-ripening on abscisic acid (ABA) and gibberellin (GA) metabolism genes and dormancy in barley (Hordeum vulgare ‘Betzes’). Analysis of gene expression in imbibed barley grains shows that different ABA metabolism genes are targeted by white light and after-ripening. Of the genes examined, white light promotes the expression of an ABA biosynthetic gene, HvNCED1, in embryos. Consistent with this result, enzyme-linked immunosorbent assays show that dormant grains imbibed under white light have higher embryo ABA content than grains imbibed in the dark. After-ripening has no effect on expression of ABA biosynthesis genes, but promotes expression of an ABA catabolism gene (HvABA8′OH1), a GA biosynthetic gene (HvGA3ox2), and a GA catabolic gene (HvGA2ox3) following imbibition. Blue light mimics the effects of white light on germination, ABA levels, and expression of GA and ABA metabolism genes. Red and far-red light have no effect on germination, ABA levels, or HvNCED1. RNA interference experiments in transgenic barley plants support a role of HvABA8′OH1 in dormancy release. Reduced HvABA8′OH1 expression in transgenic HvABA8′OH1 RNAi grains results in higher levels of ABA and increased dormancy compared to nontransgenic grains.