919 resultados para visual pattern recognition network


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concept of knowledge is the central one used when solving the various problems of data mining and pattern recognition in finite spaces of Boolean or multi-valued attributes. A special form of knowledge representation, called implicative regularities, is proposed for applying in two powerful tools of modern logic: the inductive inference and the deductive inference. The first one is used for extracting the knowledge from the data. The second is applied when the knowledge is used for calculation of the goal attribute values. A set of efficient algorithms was developed for that, dealing with Boolean functions and finite predicates represented by logical vectors and matrices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a method for image recognition on the base of projections. Radon transform gives an opportunity to map image into space of its projections. Projection properties allow constructing informative features on the base of moments that can be successfully used for invariant recognition. Offered approach gives about 91-97% of correct recognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a speech recognition engine using hybrid model of Hidden Markov Model (HMM) and Gaussian Mixture Model (GMM). Both the models have been trained independently and the respective likelihood values have been considered jointly and input to a decision logic which provides net likelihood as the output. This hybrid model has been compared with the HMM model. Training and testing has been done by using a database of 20 Hindi words spoken by 80 different speakers. Recognition rates achieved by normal HMM are 83.5% and it gets increased to 85% by using the hybrid approach of HMM and GMM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estimates Calculating Algorithms have a long story of application to recognition problems. Furthermore they have formed a basis for algebraic recognition theory. Yet use of ECA polynomials was limited to theoretical reasoning because of complexity of their construction and optimization. The new recognition method “AVO- polynom” based upon ECA polynomial of simple structure is described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a novel approach for character recognition has been presented with the help of genetic operators which have evolved from biological genetics and help us to achieve highly accurate results. A genetic algorithm approach has been described in which the biological haploid chromosomes have been implemented using a single row bit pattern of 315 values which have been operated upon by various genetic operators. A set of characters are taken as an initial population from which various new generations of characters are generated with the help of selection, crossover and mutation. Variations of population of characters are evolved from which the fittest solution is found by subjecting the various populations to a new fitness function developed. The methodology works and reduces the dissimilarity coefficient found by the fitness function between the character to be recognized and members of the populations and on reaching threshold limit of the error found from dissimilarity, it recognizes the character. As the new population is being generated from the older population, traits are passed on from one generation to another. We present a methodology with the help of which we are able to achieve highly efficient character recognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many Object recognition techniques perform some flavour of point pattern matching between a model and a scene. Such points are usually selected through a feature detection algorithm that is robust to a class of image transformations and a suitable descriptor is computed over them in order to get a reliable matching. Moreover, some approaches take an additional step by casting the correspondence problem into a matching between graphs defined over feature points. The motivation is that the relational model would add more discriminative power, however the overall effectiveness strongly depends on the ability to build a graph that is stable with respect to both changes in the object appearance and spatial distribution of interest points. In fact, widely used graph-based representations, have shown to suffer some limitations, especially with respect to changes in the Euclidean organization of the feature points. In this paper we introduce a technique to build relational structures over corner points that does not depend on the spatial distribution of the features. © 2012 ICPR Org Committee.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The analysis of complex networks is usually based on key properties such as small-worldness and vertex degree distribution. The presence of symmetric motifs on the other hand has been related to redundancy and thus robustness of the networks. In this paper we propose a method for detecting approximate axial symmetries in networks. For each pair of nodes, we define a continuous-time quantum walk which is evolved through time. By measuring the probability that the quantum walker to visits each node of the network in this time frame, we are able to determine whether the two vertices are symmetrical with respect to any axis of the graph. Moreover, we show that we are able to successfully detect approximate axial symmetries too. We show the efficacy of our approach by analysing both synthetic and real-world data. © 2012 Springer-Verlag Berlin Heidelberg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider the task of recognizing epigraphs in images such as photos taken using mobile devices. Given a set of 17,155 photos related to 14,560 epigraphs, we used a k-NearestNeighbor approach in order to perform the recognition. The contribution of this work is in evaluating state-of-the-art visual object recognition techniques in this specific context. The experimental results conducted show that Vector of Locally Aggregated Descriptors obtained aggregating SIFT descriptors is the best choice for this task.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research is to establish new optimization methods for pattern recognition and classification of different white blood cells in actual patient data to enhance the process of diagnosis. Beckman-Coulter Corporation supplied flow cytometry data of numerous patients that are used as training sets to exploit the different physiological characteristics of the different samples provided. The methods of Support Vector Machines (SVM) and Artificial Neural Networks (ANN) were used as promising pattern classification techniques to identify different white blood cell samples and provide information to medical doctors in the form of diagnostic references for the specific disease states, leukemia. The obtained results prove that when a neural network classifier is well configured and trained with cross-validation, it can perform better than support vector classifiers alone for this type of data. Furthermore, a new unsupervised learning algorithm---Density based Adaptive Window Clustering algorithm (DAWC) was designed to process large volumes of data for finding location of high data cluster in real-time. It reduces the computational load to ∼O(N) number of computations, and thus making the algorithm more attractive and faster than current hierarchical algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work is to use algorithms known as Boltzmann Machine to rebuild and classify patterns as images. This algorithm has a similar structure to that of an Artificial Neural Network but network nodes have stochastic and probabilistic decisions. This work presents the theoretical framework of the main Artificial Neural Networks, General Boltzmann Machine algorithm and a variation of this algorithm known as Restricted Boltzmann Machine. Computer simulations are performed comparing algorithms Artificial Neural Network Backpropagation with these algorithms Boltzmann General Machine and Machine Restricted Boltzmann. Through computer simulations are analyzed executions times of the different described algorithms and bit hit percentage of trained patterns that are later reconstructed. Finally, they used binary images with and without noise in training Restricted Boltzmann Machine algorithm, these images are reconstructed and classified according to the bit hit percentage in the reconstruction of the images. The Boltzmann machine algorithms were able to classify patterns trained and showed excellent results in the reconstruction of the standards code faster runtime and thus can be used in applications such as image recognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The automated sensing scheme described in this paper has the potential to automatically capture, discriminate and classify transients in gait. The mechanical simplicity of the walking platform offers advantages over standard force plates. There is less restriction on dimensions offering the opportunity for multi-contact and multiple steps. This addresses the challenge of patient targeting and the evaluation of patients in a variety of ambulatory applications. In this work the sensitivity of the distributive tactile sensing method has been investigated experimentally. Using coupled time series data from a small number of sensors, gait patterns are compared with stored templates using a pattern recognition algorithm. By using a neural network these patterns were interpreted classifying normal and affected walking events with an accuracy of just under 90%. This system has potential in gait analysis and rehabilitation as a tool for early diagnosis in walking disorders, for determining response to therapy and for identifying changes between pre and post operative gait. Copyright © 2009 by ASME.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is widely accepted that infants begin learning their native language not by learning words, but by discovering features of the speech signal: consonants, vowels, and combinations of these sounds. Learning to understand words, as opposed to just perceiving their sounds, is said to come later, between 9 and 15 mo of age, when infants develop a capacity for interpreting others' goals and intentions. Here, we demonstrate that this consensus about the developmental sequence of human language learning is flawed: in fact, infants already know the meanings of several common words from the age of 6 mo onward. We presented 6- to 9-mo-old infants with sets of pictures to view while their parent named a picture in each set. Over this entire age range, infants directed their gaze to the named pictures, indicating their understanding of spoken words. Because the words were not trained in the laboratory, the results show that even young infants learn ordinary words through daily experience with language. This surprising accomplishment indicates that, contrary to prevailing beliefs, either infants can already grasp the referential intentions of adults at 6 mo or infants can learn words before this ability emerges. The precocious discovery of word meanings suggests a perspective in which learning vocabulary and learning the sound structure of spoken language go hand in hand as language acquisition begins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The selected publications are focused on the relations between users, eGames and the educational context, and how they interact together, so that both learning and user performance are improved through feedback provision. A key part of this analysis is the identification of behavioural, anthropological patterns, so that users can be clustered based on their actions, and the steps taken in the system (e.g. social network, online community, or virtual campus). In doing so, we can analyse large data sets of information made by a broad user sample,which will provide more accurate statistical reports and readings. Furthermore, this research is focused on how users can be clustered based on individual and group behaviour, so that a personalized support through feedback is provided, and the personal learning process is improved as well as the group interaction. We take inputs from every person and from the group they belong to, cluster the contributions, find behavioural patterns and provide personalized feedback to the individual and the group, based on personal and group findings. And we do all this in the context of educational games integrated in learning communities and learning management systems. To carry out this research we design a set of research questions along the 10-year published work presented in this thesis. We ask if the users can be clustered together based on the inputs provided by them and their groups; if and how these data are useful to improve the learner performance and the group interaction; if and how feedback becomes a useful tool for such pedagogical goal; if and how eGames become a powerful context to deploy the pedagogical methodology and the various research methods and activities that make use of that feedback to encourage learning and interaction; if and how a game design and a learning design must be defined and implemented to achieve these objectives, and to facilitate the productive authoring and integration of eGames in pedagogical contexts and frameworks. We conclude that educational games are a resourceful tool to provide a user experience towards a better personalized learning performance and an enhance group interaction along the way. To do so, eGames, while integrated in an educational context, must follow a specific set of user and technical requirements, so that the playful context supports the pedagogical model underneath. We also conclude that, while playing, users can be clustered based on their personal behaviour and interaction with others, thanks to the pattern identification. Based on this information, a set of recommendations are provided Digital Anthropology and educational eGames 6 /216 to the user and the group in the form of personalized feedback, timely managed for an optimum impact on learning performance and group interaction level. In this research, Digital Anthropology is introduced as a concept at a late stage to provide a backbone across various academic fields including: Social Science, Cognitive Science, Behavioural Science, Educational games and, of course, Technology-enhance learning. Although just recently described as an evolution of traditional anthropology, this approach to digital behaviour and social structure facilitates the understanding amongst fields and a comprehensive view towards a combined approach. This research takes forward the already existing work and published research onusers and eGames for learning, and turns the focus onto the next step — the clustering of users based on their behaviour and offering proper, personalized feedback to the user based on that clustering, rather than just on isolated inputs from every user. Indeed, this pattern recognition in the described context of eGames in educational contexts, and towards the presented aim of personalized counselling to the user and the group through feedback, is something that has not been accomplished before.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the novel theory for performing multi-agent activity recognition without requiring large training corpora. The reduced need for data means that robust probabilistic recognition can be performed within domains where annotated datasets are traditionally unavailable. Complex human activities are composed from sequences of underlying primitive activities. We do not assume that the exact temporal ordering of primitives is necessary, so can represent complex activity using an unordered bag. Our three-tier architecture comprises low-level video tracking, event analysis and high-level inference. High-level inference is performed using a new, cascading extension of the Rao–Blackwellised Particle Filter. Simulated annealing is used to identify pairs of agents involved in multi-agent activity. We validate our framework using the benchmarked PETS 2006 video surveillance dataset and our own sequences, and achieve a mean recognition F-Score of 0.82. Our approach achieves a mean improvement of 17% over a Hidden Markov Model baseline.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work addresses the problem of detecting human behavioural anomalies in crowded surveillance environments. We focus in particular on the problem of detecting subtle anomalies in a behaviourally heterogeneous surveillance scene. To reach this goal we implement a novel unsupervised context-aware process. We propose and evaluate a method of utilising social context and scene context to improve behaviour analysis. We find that in a crowded scene the application of Mutual Information based social context permits the ability to prevent self-justifying groups and propagate anomalies in a social network, granting a greater anomaly detection capability. Scene context uniformly improves the detection of anomalies in both datasets. The strength of our contextual features is demonstrated by the detection of subtly abnormal behaviours, which otherwise remain indistinguishable from normal behaviour.