958 resultados para tuning without chirp


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organisms quickly learn about their surroundings and display synaptic plasticity which is thought to be critical for their survival. For example, fruit flies Drosophila melanogaster exposed to highly enriched social environment are found to show increased synaptic connections and a corresponding increase in sleep. Here we asked if social environment comprising a pair of same-sex individuals could enhance sleep in the participating individuals. To study this, we maintained individuals of D. melanogaster in same-sex pairs for a period of 1 to 4 days, and after separation, monitored sleep of the previously socialized and solitary individuals under similar conditions. Males maintained in pairs for 3 or more days were found to sleep significantly more during daytime and showed a tendency to fall asleep sooner as compared to solitary controls (both measures together are henceforth referred to as ``sleep-enhancement''). This sleep phenotype is not strain-specific as it is observed in males from three different ``wild type'' strains of D. melanogaster. Previous studies on social interaction mediated sleep-enhancement presumed `waking experience' during the interaction to be the primary underlying cause; however, we found sleep-enhancement to occur without any significant increase in wakefulness. Furthermore, while sleep-enhancement due to group-wise social interaction requires Pigment Dispersing Factor (PDF) positive neurons; PDF positive and CRYPTOCHROME (CRY) positive circadian clock neurons and the core circadian clock genes are not required for sleep-enhancement to occur when males interact in pairs. Pair-wise social interaction mediated sleep-enhancement requires dopamine and olfactory signaling, while visual and gustatory signaling systems seem to be dispensable. These results suggest that socialization alone (without any change in wakefulness) is sufficient to cause sleep-enhancement in fruit fly D. melanogaster males, and that its neuronal control is context-specific.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that an electrically soft ferroelectric host can be used to tune the photoluminescence (PL) response of rare-earth emitter ions by external electric field. The proof of this concept is demonstrated by changing the PL response of the Eu3+ ion by electric field on a model system Eu-doped 0.94(Na1/2Bi1/2TiO3)-0.06(BaTiO3). We also show that new channels of radiative transitions, forbidden otherwise, open up due to positional disorder in the system, which can as well be tuned by electric field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hippocampal pyramidal neurons express an intraneuronal map of spectral tuning mediated by hyperpolarization-activated cyclic-nucleotide-gated nonspecific-cation channels. Modeling studies have predicted a critical regulatory role for A-type potassium (KA) channels towards augmenting functional robustness of this map. To test this, we performed patch-clamp recordings from soma and dendrites of rat hippocampal pyramidal neurons, and measured spectral tuning before and after blocking KA channels using two structurally distinct pharmacological agents. Consistent with computational predictions, we found that blocking KA channels resulted in a significant reduction in resonance frequency and significant increases in input resistance, impedance amplitude and action-potential firing frequency across the somato-apical trunk. Furthermore, across all measured locations, blocking KA channels enhanced temporal summation of postsynaptic potentials and critically altered the impedance phase profile, resulting in a significant reduction in total inductive phase. Finally, pair-wise correlations between intraneuronal percentage changes (after blocking KA channels) in different measurements were mostly weak, suggesting differential regulation of different physiological properties by KA channels. Our results unveil a pivotal role for fast transient channels in regulating theta-frequency spectral tuning and intrinsic phase response, and suggest that degeneracy with reference to several coexisting functional maps is mediated by cross-channel interactions across the active dendritic arbor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper demonstrates the respective roles that combined index- and gain-coupling play in the overall link performance of distributed feedback (DFB) lasers. Their impacts on both static and dynamic properties such as slope efficiency, resonance frequency, damping rate, and chirp are investigated. Simulation results are compared with experimental data with good agreement. Transmission-oriented optimization is then demonstrated based on a targeted specification. The design tradeoffs are revealed, and it is shown that a modest combination of index- and gain-coupling enables optimum transmission at 10 Gbit/s.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the fabrication and electrical characterization of high tuning range AlSi RF MEMS capacitors. We present experimental results obtained by a surface micromachining process that uses dry etching of sacrificial amorphous silicon to release Al-1%Si membranes and has a low thermal budget (<450 °C) being compatible with CMOS post-processing. The proposed silicon sacrificial layer dry etching (SSLDE) process is able to provide very high Si etch rates (3-15 μm/min, depending on process parameters) with high Si: SiO2 selectivity (>10,000:1). Single- and double-air-gap MEMS capacitors, as well as some dedicated test structures needed to calibrate the electro-mechanical parameters and explore the reliability of the proposed technology, have been fabricated with the new process. S-parameter measurements from 100 MHz up to 2 GHz have shown a capacitance tuning range higher than 100% with the double-air-gap architecture. The tuning range can be enlarged with a proper DC electrical bias of the capacitor electrodes. Finally, the reported results make the proposed MEMS tuneable capacitor a good candidate for above-IC integration in communications applications. © 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple way to deposit single-wall carbon nanotubes by CVD without the co-deposition of unwanted a-C was demonstrated. It was found that the catalytic deposition of SWCNTs occurs at a substantial rate compared to the self-pyrolysis of the hydrocarbon gas used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bonded networks of metal fibres are highly porous, permeable materials, which often exhibit relatively high strength. Material of this type has been produced, using melt-extracted ferritic stainless steel fibres, and characterised in terms of fibre volume fraction, fibre segment (joint-to-joint) length and fibre orientation distribution. Young's moduli and yield stresses have been measured. The behaviour when subjected to a magnetic field has also been investigated. This causes macroscopic straining, as the individual fibres become magnetised and tend to align with the applied field. The modeling approach of Markaki and Clyne, recently developed for prediction of the mechanical and magneto-mechanical properties of such materials, is briefly summarised and comparisons are made with experimental data. The effects of filling the inter-fibre void with compliant (polymeric) matrices have also been explored. In general the modeling approach gives reliable predictions, particularly when the network architecture has been characterised using X-ray tomography. © 2005 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compare experimental results showing stable dissipative-soliton solutions exist in mode-locked lasers with ultra-large normal dispersion (as large as 21.5 ps2), with both the analytic framework provided by Haus' master-equation and full numerical simulations. © 2010 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fibrillar structures are common features on the feet of many animals, such as geckos, spiders and flies. Theoretical analyses often use periodical array to simulate the assembly, and each fibril is assumed to be of equal load sharing (ELS). On the other hand, studies on a single fibril show that the adhesive interface is flaw insensitive when the size of the fibril is not larger than a critical one. In this paper, the Dugdale Barenblatt model has been used to study the conditions of ELS and how to enhance adhesion by tuning the geometrical parameters in fibrillar structures. Different configurations in an array of fibres are considered, such as line array, square and hexagonal patterns. It is found that in order to satisfy flaw-insensitivity and ELS conditions, the number of fibrils and the pull-off force of the fibrillar interface depend significantly on the fibre separation, the interface interacting energy, the effective range of cohesive interaction and the radius of fibrils. Proper tuning of the geometrical parameters will enhance the pull-off force of the fibrillar structures. This study may suggest possible methods to design strong adhesion devices for engineering applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visualization results demonstrate the evolution of Kelvin-Helmholtz unstable waves into vortex pairing in a separated shear layer of a blunf circular. The results with acoustic excitation are quite different from that without acoustic excitation, and the phenomenon with excitation in a separated shear layer follows the rule of Devil s staircase, which always occurs in a non-linear dynamical system of two coupling vibrators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The snap-through and pull-in instabilities of the micromachined arch-shaped beams under an electrostatic loading are studied both theoretically and experimentally. The pull-in instability that results in a system collision with an electrode substrate may lead to a system failure and, thus, limits the system maximum displacement. The beam/plate structure with a flat initial configuration under an electrostatic loading can only experience the pull-in instability. With the different arch configurations, the structure may experience either only the pull-in instability or the snap-through and pull-in instabilities together. As shown in our computation and experiment, those arch-shaped beams with the snap-through instability have the larger maximum displacement compared with the arch-shaped beams with only the pull-in stability and those with the flat initial configuration. The snap-through occurs by exerting a fixed load, and the structure experiences a discontinuous displacement jump without consuming power. Furthermore, after the snap-through jump, the structures are demonstrated to have the capacity to withstand further electrostatic loading without pull-in. Those properties of consuming no power and increasing the structure deflection range without pull-in is very useful in microelectromechanical systems design, which can offer better sensitivity and tuning range.