995 resultados para tropical Africa
Resumo:
To evaluate the effects of heat acclimation on sweat rate redistribution and thermodynamic parameters, 9 tropical native volunteers were submitted to 11 days of exercise-heat exposures (40 +/- 0 degrees C and 45.1 +/- 0.2% relative humidity). Sudomotor function was evaluated by measuring total and local (forehead, chest, arm, forearm, and thigh) sweat rates, local sweat sodium concentration, and mean skin and rectal temperatures. We also calculated heat production (H), heat storage (S), heat exchange by radiation (R) and by convection (C), evaporated sweat (E(sw)), sweating efficiency (eta(sw)), skin wettedness (w(sk)), and the ratio between the heat storage and the sum of heat production and heat gains by radiation and convection (S/(H+R+C)). The heat acclimation increased the whole-body sweat rate and reduced the mean skin temperature. There were changes in the local sweat rate patterns: on the arm, forearm, and thigh it increased significantly from day 1 to day 11 (all p<0.05) and the sweat rates from the forehead and the chest showed a small nonsignificant increase (p=0.34 and 0.17, respectively). The relative increase of local sweat rates on day 11 was not different among the sites; however, when comparing the limbs (arm, forearm, and thigh) with the trunk (forehead and chest), there was a significant higher increase in the limbs (32 +/- 5%) in comparison to the trunk (11 +/- 2%, p=0.001). After the heat acclimation period we observed higher w(sk) and E(sw) and reduced S/(H+R+C), meaning greater thermoregulatory efficiency. The increase in the limb sweat rate, but not the increase in the trunk sweat rate, correlated with the increased w(sk), E(sw), and reduced S/(H+R+C) (p<0.05 to all). Altogether, it can be concluded that heat acclimation increased the limbs` sweat rates in tropical natives and that this increase led to increased loss of heat through evaporation of sweat and this higher sweat evaporation was related to higher thermoregulatory efficiency. J Physiol Anthropol 29(1): 1-12, 2010 http://www.jstage.jst.go.jp/browse/jpa2 [DOI: 10.2114/jpa2.29.1]
Resumo:
Initially, basic concepts are presented concerning the cell, genetic code and protein synthesis, and some techniques of molecular biology, such as PCR, PCR-RFLP, DNA sequencing, RT-PCR and immunoblotting. Protocols of nucleotides and of proteins extraction are supplied, such as salting out in peripheral blood allied to phenol-chloroform and trizol methods in skin samples. To proceed, commented examples of application of those techniques of molecular biology for the etiologic diagnosis and for research in tropical dermatoses, with emphasis to American tegumentary leishmaniasis and leprosy are presented.
Resumo:
The cellular prion protein (PrPC) is a neuronal anchored glycoprotein that has been associated with distinct functions in the CNS, such as cellular adhesion and differentiation, synaptic plasticity and cognition. Here we investigated the putative involvement of the PrPC in the innate fear-induced behavioural reactions in wild-type (WT), PrPC knockout (Prnp(0/0)) and the PrPC overexpressing Tg-20 mice evoked in a prey versus predator paradigm. The behavioural performance of these mouse strains in olfactory discrimination tasks was also investigated. When confronted with coral snakes, mice from both Prnp(0/0) and Tg-20 strains presented a significant decrease in frequency and duration of defensive attention and risk assessment, compared to WT mice. Tg-20 mice presented decreased frequency of escape responses, increased exploratory behaviour, and enhancement of interaction with the snake, suggesting a robust fearlessness caused by PrPC overexpression. Interestingly, there was also a discrete decrease in the attentional defensive response (decreased frequency of defensive alertness) in Prnp(0/0) mice in the presence of coral snakes. Moreover, Tg-20 mice presented an increased exploration of novel environment and odors. The present findings indicate that the PrPC overexpression causes hyperactivity, fearlessness, and increased preference for visual, tactile and olfactory stimuli-associated novelty, and that the PrPC deficiency might lead to attention deficits. These results suggest that PrPC exerts an important role in the modulation of innate fear and novelty-induced exploration. (C) 2008 Published by Elsevier B.V.
Resumo:
The genus Schistosoma is composed of blood flukes that infect vertebrates, from which three species are major causative agents of human schistosomiasis, a tropical disease that affects more than 200 million people. Current models of the recent evolution of Schistosoma indicate multiple events of migration and speciation from an Asian ancestral species. Transposable elements are important drivers of genome evolution and have been hypothesised to have an important role in speciation. In this work, we describe a comprehensive inventory of Schistosoma mansoni and Schistosoma japonicum retrotransposons, based on their recently published genomic data. We find a considerable difference in retrotransposon representation between the two species (22% and 13%, respectively). A large part of this difference can be attributed to higher representation of two previously described families of S. mansoni retrotransposons (SR2 and Perere-3/SR3), compared with the representation of their closest relative families in S. japonicum. A more detailed analysis suggests that these two S. mansoni families were the subject of recent bursts of transposition that were not paralleled by their S. japonicum counterparts. We hypothesise that these bursts could be a consequence of the evolutionary pressure resulting from migration of Schistosoma from Asia to Africa and their establishment in this new environment, helping both speciation and adaptation. (C) 2009 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Deforestation in southeast Brazil has led to the extinction of Hymenaea courbaril var. stilbocarpa and ex situ conservation has been established. In this study, the levels of genetic diversity and the effective population size of H. courbaril in a germplasm bank were investigated using six nuclear microsatellite loci. A total of 79 and 91 alleles were found in 65 seed-trees and their 176 offspring, respectively. Offspring have a higher average number of alleles per locus (A = 15.2) than seed-trees (A = 13.2), but lower observed heterozygosity (offspring: H (o) = 0.566; seed-trees: H (o) = 0.607). The estimate of outcrossing rate shows that the study population is perfectly outcrossed (t (m) = 0.978, P > 0.05). Significant deviations from random mating were detected through mating among relatives and correlated matings. The average variance in effective population size for each family was 2.63, with a total effective population size retained in the bank of 170.1. These results confirm that the preserved population of H. courbaril retains substantial genetic variability.