925 resultados para tree-dimensional analytical solution


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Bernoulli's model for vibration of beams is often used to make predictions of bending modulus of elasticity when using dynamic tests. However this model ignores the rotary inertia and shear. Such effects can be added to the solution of Bernoulli's equation by means of the correction proposed by Goens (1931) or by Timoshenko (1953). But to apply these corrections it is necessary to know the E/G ratio of the material. The objective of this paper is the determination of the E/G ratio of wood logs by adjusting the analytical solution of the Timoshenko beam model to the dynamic testing data of 20 Eucalyptus citriodora logs. The dynamic testing was performed with the logs in free-free suspension. To find the stiffness properties of the logs, the residue minimization was carried out using the Genetic Algorithm (GA). From the result analysis one can reasonably assume E/G = 20 for wood logs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A poorly understood phenomenon seen in complex systems is diffusion characterized by Hurst exponent H approximate to 1/2 but with non-Gaussian statistics. Motivated by such empirical findings, we report an exact analytical solution for a non-Markovian random walk model that gives rise to weakly anomalous diffusion with H = 1/2 but with a non-Gaussian propagator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new method to quantify substructures in clusters of galaxies, based on the analysis of the intensity of structures. This analysis is done in a residual image that is the result of the subtraction of a surface brightness model, obtained by fitting a two-dimensional analytical model (beta-model or Sersic profile) with elliptical symmetry, from the X-ray image. Our method is applied to 34 clusters observed by the Chandra Space Telescope that are in the redshift range z is an element of [0.02, 0.2] and have a signal-to-noise ratio (S/N) greater than 100. We present the calibration of the method and the relations between the substructure level with physical quantities, such as the mass, X-ray luminosity, temperature, and cluster redshift. We use our method to separate the clusters in two sub-samples of high-and low-substructure levels. We conclude, using Monte Carlo simulations, that the method recuperates very well the true amount of substructure for small angular core radii clusters (with respect to the whole image size) and good S/N observations. We find no evidence of correlation between the substructure level and physical properties of the clusters such as gas temperature, X-ray luminosity, and redshift; however, analysis suggest a trend between the substructure level and cluster mass. The scaling relations for the two sub-samples (high-and low-substructure level clusters) are different (they present an offset, i. e., given a fixed mass or temperature, low-substructure clusters tend to be more X-ray luminous), which is an important result for cosmological tests using the mass-luminosity relation to obtain the cluster mass function, since they rely on the assumption that clusters do not present different scaling relations according to their dynamical state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On the basis of the full analytical solution of the overall unitary dynamics, the time evolution of entanglement is studied in a simple bipartite model system evolving unitarily from a pure initial state. The system consists of two particles in one spatial dimension bound by harmonic forces and having its free center of mass initially localized in space in a minimum uncertainty wavepacket. The existence of such initial states in which the bound particles are not entangled is discussed. Galilean invariance of the system ensures that the dynamics of entanglement between the two particles is independent of the wavepacket mean momentum. In fact, as shown, it is driven by the dispersive center of mass free dynamics, and evolves in a time scale that depends on the interparticle interaction in an essential way.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study is presented an economic optimization method to design telescope irrigation laterals (multidiameter) with regular spaced outlets. The proposed analytical hydraulic solution was validated by means of a pipeline composed of three different diameters. The minimum acquisition cost of the telescope pipeline was determined by an ideal arrangement of lengths and respective diameters for each one of the three segments. The mathematical optimization method based on the Lagrange multipliers provides a strategy for finding the maximum or minimum of a function subject to certain constraints. In this case, the objective function describes the acquisition cost of pipes, and the constraints are determined from hydraulic parameters as length of irrigation laterals and total head loss permitted. The developed analytical solution provides the ideal combination of each pipe segment length and respective diameter, resulting in a decreased of the acquisition cost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The equilibrium magnetic field inside axisymmetric plasmas with inversions on the toroidal current density is studied. Structurally stable non-nested magnetic surfaces are considered. For any inversion in the internal current density the magnetic families define several positive current channels about a central negative one. A general expression relating the positive and negative currents is derived in terms of a topological anisotropy parameter. Next, an analytical local solution for the poloidal magnetic flux is derived and shown compatible with current hollow magnetic pitch measurements shown in the literature. Finally, the analytical solution exhibits non-nested magnetic families with positive anisotropy, indicating that the current inside the positive channels have at least twice the magnitude of the central one.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three published papers are resumed in this thesis. Different aspects of the semiclassical theory of gravity are discussed. In chapter 1 we find a new perturbative (yet analytical) solution to the unsolved problem of the metric junction between two Friedmann-Robertson-Walker using Israel's formalism. The case of an expanding radiation core inside an expanding or collapsing dust exterior is treated. This model can be useful in the "landscape" cosmology in string theory or for treating new gravastar configurations. In chapter 2 we investigate the possible use of the Kodama vector field as a substitute for the Killing vector field. In particular we find the response function of an Unruh detector following an (accelerated) Kodama trajectory. The detector has finite extension and backreaction is considered. In chapter 3 we study the possible creation of microscopic black holes at LHC in the brane world model. It is found that the black hole tidal charge has a fundamental role in preventing the formation of the horizon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main result in this work is the solution of the Jeans equations for an axisymmetric galaxy model containing a baryonic component (distributed according to a Miyamoto-Nagai profile) and a dark matter halo (described by the Binney logarithmic potential). The velocity dispersion, azimuthal velocity and some other interesting quantities such as the asymmetric drift are studied, along with the influence of the model parameters on these (observable) quantities. We also give an estimate for the velocity of the radial flow, caused by the asymmetric drift. Other than the mathematical beauty that lies in solving a model analytically, the interest of this kind of results can be mainly found in numerical simulations that study the evolution of gas flows. For example, it is important to know how certain parameters such as the shape (oblate, prolate, spherical) of a dark matter halo, or the flattening of the baryonic matter, or the mass ratio between dark and baryonic matter, have an influence on observable quantities such as the velocity dispersion. In the introductory chapter, we discuss the Jeans equations, which provide information about the velocity dispersion of a system. Next we will consider some dynamical quantities that will be useful in the rest of the work, e.g. the asymmetric drift. In Chapter 2 we discuss in some more detail the family of galaxy models we studied. In Chapter 3 we give the solution of the Jeans equations. Chapter 4 describes and illustrates the behaviour of the velocity dispersion, as a function of the several parameters, along with asymptotic expansions. In Chapter 5 we will investigate the behaviour of certain dynamical quantities for this model. We conclude with a discussion in Chapter 6.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cyclonic circulation of the Atlantic subpolar gyre is a key mechanism for North Atlantic climate variability on a wide range of time scales. It is generally accepted that it is driven by both cyclonic winds and buoyancy forcing, yet the individual importance and dynamical interactions of the two contributions remain unclear. The authors propose a simplified four-box model representing the convective basin of the Labrador Sea and its shallow and deep boundary current system, the western subpolar gyre. Convective heat loss drives a baroclinic flow of relatively light water around the dense center. Eddy salt flux from the boundary current to the center increases with a stronger circulation, favors the formation of dense waters, and thereby sustains a strong baroclinic flow, approximately 10%–25% of the total. In contrast, when the baroclinic flow is not active, surface waters may be too fresh to convect, and a buoyancy-driven circulation cannot develop. This situation corresponds to a second stable circulation mode. A hysteresis is found for variations in surface freshwater flux and the salinity of the near-surface boundary current. An analytical solution is presented and analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long- and short-term strain variations along the Australian-Pacific plate boundary through the South Island of New Zealand, including a 300% increase in orogen width, coexistence of oblique thrusting on orthogonal structures, and variability in the locus of orogenic gold deposits, coincide with rheologically relevant geological variation. Our model investigates the consequences of thin, strong lower crust in the north and thick, weak lower crust in the south. Solution of the full 3-D mechanical equations reproduces the larger wavelength strain patterns of the orogen. A 3-D perturbation-based analytical solution leads to the identification of the sensitivity of displacement type to minor stress changes. Transition from boundary-normal thrusting to boundary-parallel thrusting occurs at the transition from strong to weak lower crust and is related to an increase in either tau(yz) (shear stress in the yz plane) or the ratio of the coordinate normal stresses, (sigma(yy)/sigma(xx)), where x and y are in the horizontal and z is vertical. Both mechanisms are compatible with the geologically dependent rheological variation employed in our model. Citation: Upton, P., P. O. Koons, D. Craw, C. M. Henderson, and R. Enlow (2009), Along-strike differences in the Southern Alps of New Zealand: Consequences of inherited variation in rheology, Tectonics, 28, TC2007, doi:10.1029/2008TC002353.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents some of the modelling criteria that have been used for the study of pyrotechnic shock propagation in the A5 VEB Structure, as well as the main conclusions from a mathematical model of the axymmetric effects in it. The separation of the lower stage of the ARIANE 5 Vehicle Equipment Bay (VEB)Structure is to be done using a pyrotechnic device. The wave propagation effects produced by the explosion have been analyzed with a computer program using as shape functions the analytical solution to the frequency response of a Timoshenko-Rayleigh beams and shells in that way the discretization can have elements as large as possible, depending on the material properties and boundary conditions. Moreover an enormous amount of possibilities in the treatment of concentrated masses, springs and dashpots, either with respect to a fixed reference or between nodes, is open for translational as well as rotational degrees of freedom.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Una evolución del método de diferencias finitas ha sido el desarrollo del método de diferencias finitas generalizadas (MDFG) que se puede aplicar a mallas irregulares o nubes de puntos. En este método se emplea una expansión en serie de Taylor junto con una aproximación por mínimos cuadrados móviles (MCM). De ese modo, las fórmulas explícitas de diferencias para nubes irregulares de puntos se pueden obtener fácilmente usando el método de Cholesky. El MDFG-MCM es un método sin malla que emplea únicamente puntos. Una contribución de esta Tesis es la aplicación del MDFG-MCM al caso de la modelización de problemas anisótropos elípticos de conductividad eléctrica incluyendo el caso de tejidos reales cuando la dirección de las fibras no es fija, sino que varía a lo largo del tejido. En esta Tesis también se muestra la extensión del método de diferencias finitas generalizadas a la solución explícita de ecuaciones parabólicas anisótropas. El método explícito incluye la formulación de un límite de estabilidad para el caso de nubes irregulares de nodos que es fácilmente calculable. Además se presenta una nueva solución analítica para una ecuación parabólica anisótropa y el MDFG-MCM explícito se aplica al caso de problemas parabólicos anisótropos de conductividad eléctrica. La evidente dificultad de realizar mediciones directas en electrocardiología ha motivado un gran interés en la simulación numérica de modelos cardiacos. La contribución más importante de esta Tesis es la aplicación de un esquema explícito con el MDFG-MCM al caso de la modelización monodominio de problemas de conductividad eléctrica. En esta Tesis presentamos un algoritmo altamente eficiente, exacto y condicionalmente estable para resolver el modelo monodominio, que describe la actividad eléctrica del corazón. El modelo consiste en una ecuación en derivadas parciales parabólica anisótropa (EDP) que está acoplada con un sistema de ecuaciones diferenciales ordinarias (EDOs) que describen las reacciones electroquímicas en las células cardiacas. El sistema resultante es difícil de resolver numéricamente debido a su complejidad. Proponemos un método basado en una separación de operadores y un método sin malla para resolver la EDP junto a un método de Runge-Kutta para resolver el sistema de EDOs de la membrana y las corrientes iónicas. ABSTRACT An evolution of the method of finite differences has been the development of generalized finite difference (GFD) method that can be applied to irregular grids or clouds of points. In this method a Taylor series expansion is used together with a moving least squares (MLS) approximation. Then, the explicit difference formulae for irregular clouds of points can be easily obtained using a simple Cholesky method. The MLS-GFD is a mesh-free method using only points. A contribution of this Thesis is the application of the MLS-GFDM to the case of modelling elliptic anisotropic electrical conductivity problems including the case of real tissues when the fiber direction is not fixed, but varies throughout the tissue. In this Thesis the extension of the generalized finite difference method to the explicit solution of parabolic anisotropic equations is also given. The explicit method includes a stability limit formulated for the case of irregular clouds of nodes that can be easily calculated. Also a new analytical solution for homogeneous parabolic anisotropic equation has been presented and an explicit MLS- GFDM has been applied to the case of parabolic anisotropic electrical conductivity problems. The obvious difficulty of performing direct measurements in electrocardiology has motivated wide interest in the numerical simulation of cardiac models. The main contribution of this Thesis is the application of an explicit scheme based in the MLS-GFDM to the case of modelling monodomain electrical conductivity problems using operator splitting including the case of anisotropic real tissues. In this Thesis we present a highly efficient, accurate and conditionally stable algorithm to solve a monodomain model, which describes the electrical activity in the heart. The model consists of a parabolic anisotropic partial differential equation (PDE), which is coupled to systems of ordinary differential equations (ODEs) describing electrochemical reactions in the cardiac cells. The resulting system is challenging to solve numerically, because of its complexity. We propose a method based on operator splitting and a meshless method for solving the PDE together with a Runge-Kutta method for solving the system of ODE’s for the membrane and ionic currents.