961 resultados para tobacco BY-2 cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND & AIMS: Regulation of gene expression in the follicle-associated epithelium (FAE) over Peyer's patches is largely unknown. CCL20, a chemokine that recruits immature dendritic cells, is one of the few FAE-specific markers described so far. Lymphotoxin beta (LTalpha1beta2) expressed on the membrane of immune cells triggers CCL20 expression in enterocytes. In this study, we measured expression profiles of LTalpha1beta2-treated intestinal epithelial cells and selected CCL20 -coregulated genes to identify new FAE markers. METHODS: Genomic profiles of T84 and Caco-2 cell lines treated with either LTalpha1beta2, flagellin, or tumor necrosis factor alpha were measured using the Affymetrix GeneChip U133A. Clustering analysis was used to select CCL20 -coregulated genes, and laser dissection microscopy and real-time polymerase chain reaction on human biopsy specimens was used to assess the expression of the selected markers. RESULTS: Applying a 2-way analysis of variance, we identified regulated genes upon the different treatments. A subset of genes involved in inflammation and related to the nuclear factor kappaB pathway was coregulated with CCL20 . Among these genes, the antiapoptotic factor TNFAIP3 was highly expressed in the FAE. CCL23 , which was not coregulated in vitro with CCL20 , was also specifically expressed in the FAE. CONCLUSIONS: We have identified 2 novel human FAE specifically expressed genes. Most of the CCL20 -coregulated genes did not show FAE-specific expression, suggesting that other signaling pathways are critical to modulate FAE-specific gene expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The B cell-activating factor from the tumor necrosis factor family (BAFF) is an important regulator of B cell immunity. Recently, we demonstrated that recombinant BAFF also provides a co-stimulatory signal to T cells. Here, we studied expression of BAFF in peripheral blood leukocytes and correlated this expression with BAFF T cell co-stimulatory function. BAFF is produced by antigen-presenting cells (APC). Blood dendritic cells (DC) as well as DC differentiated in vitro from monocytes or CD34+ stem cells express BAFF mRNA. Exposure to bacterial products further up-regulates BAFF production in these cells. A low level of BAFF transcription, up-regulated upon TCR stimulation, was also detected in T cells. Functionally, blockade of endogenous BAFF produced by APC and, to a lesser extent, by T cells inhibits T cell activation. Altogether, this indicates that BAFF may regulate T cell immunity during APC-T cell interactions and as an autocrine factor once T cells have detached from the APC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The transcription factor NFAT5/TonEBP regulates the response of mammalian cells to hypertonicity. However, little is known about the physiopathologic tonicity thresholds that trigger its transcriptional activity in primary cells. Wilkins et al. recently developed a transgenic mouse carrying a luciferase reporter (9xNFAT-Luc) driven by a cluster of NFAT sites, that was activated by calcineurin-dependent NFATc proteins. Since the NFAT site of this reporter was very similar to an optimal NFAT5 site, we tested whether this reporter could detect the activation of NFAT5 in transgenic cells.Results: The 9xNFAT-Luc reporter was activated by hypertonicity in an NFAT5-dependent manner in different types of non-transformed transgenic cells: lymphocytes, macrophages and fibroblasts. Activation of this reporter by the phorbol ester PMA plus ionomycin was independent of NFAT5 and mediated by NFATc proteins. Transcriptional activation of NFAT5 in T lymphocytes was detected at hypertonic conditions of 360–380 mOsm/kg (isotonic conditions being 300 mOsm/kg) and strongly induced at 400 mOsm/kg. Such levels have been recorded in plasma in patients with osmoregulatory disorders and in mice deficient in aquaporins and vasopressin receptor. The hypertonicity threshold required to activate NFAT5 was higher in bone marrow-derived macrophages (430 mOsm/kg) and embryonic fibroblasts (480 mOsm/kg). Activation of the 9xNFAT-Luc reporter by hypertonicity in lymphocytes was insensitive to the ERK inhibitor PD98059, partially inhibited by the PI3-kinase inhibitor wortmannin (0.5 μM) and the PKA inhibitor H89, and substantially downregulated by p38 inhibitors (SB203580 and SB202190) and by inhibition of PI3-kinase-related kinases with 25 μM LY294002. Sensitivity of the reporter to FK506 varied among cell types and was greater in primary T cells than in fibroblasts and macrophages.Conclusion: Our results indicate that NFAT5 is a sensitive responder to pathologic increases in extracellular tonicity in T lymphocytes. Activation of NFAT5 by hypertonicity in lymphocytes was mediated by a combination of signaling pathways that differed from those required in other cell types. We propose that the 9xNFAT-Luc transgenic mouse model might be useful to study the physiopathological regulation of both NFAT5 and NFATc factors in primary cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Awareness of the negative effects of smoking on children's health prompted a decrease in the self-reporting of parental tobacco use in periodic surveys from most industrialized countries. Our aim is to assess changes between ETS exposure at the end of pregnancy and at 4 years of age determined by the parents' self-report and measurement of cotinine in age related biological matrices.Methods: The prospective birth cohort included 487 infants from Barcelona city (Spain). Mothers were asked about maternal and household smoking habit. Cord serum and children's urinary cotinine were analyzed in duplicate using a double antibody radioimmunoassay. Results: At 4 years of age, the median urinary cotinine level in children increased 1.4 or 3.5 times when father or mother smoked, respectively. Cotinine levels in children's urine statistically differentiated children from smoking mothers (Geometric Mean (GM) 19.7 ng/ml; 95% CI 16.83–23.01) and exposed homes (GM 7.1 ng/ml; 95% CI 5.61–8.99) compared with non-exposed homes (GM 4.5 ng/ml; 95% CI 3.71–5.48). Maternal self-reported ETS exposure in homes declined in the four year span between the two time periods from 42.2% to 31.0% (p < 0.01). Nevertheless, most of the children considered non-exposed by their mothers had detectable levels of cotinine above 1 ng/mL in their urine.Conclusion: We concluded that cotinine levels determined in cord blood and urine, respectively, were useful for categorizing the children exposed to smoking and showed that a certain increase in ETS exposure during the 4-year follow-up period occurred.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dendritic cells are unique in their capacity to process antigens and prime naive CD8(+) T cells. Contrary to most cells, which express the standard proteasomes, dendritic cells express immunoproteasomes constitutively. The melanoma-associated protein Melan-A(MART1) contains an HLA-A2-restricted peptide that is poorly processed by melanoma cells expressing immunoproteasomes in vitro. Here, we show that the expression of Melan-A in dendritic cells fails to elicit T-cell responses in vitro and in vivo because it is not processed by the proteasomes of dendritic cells. In contrast, dendritic cells lacking immunoproteasomes induce strong anti-Melan-A T-cell responses in vitro and in vivo. These results suggest that the inefficient processing of self-antigens, such as Melan-A, by the immunoproteasomes of professional antigen-presenting cells prevents the induction of antitumor T-cell responses in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-steroidal anti-inflammatory drugs (NSAIDs) and specific inhibitors of cyclooxygenase (COX)-2, are therapeutic groups widely used for the treatment of pain, inflammation and fever. There is growing experimental and clinical evidence indicating NSAIDs and COX-2 inhibitors also have anti-cancer activity. Epidemiological studies have shown that regular use of Aspirin and other NSAIDs reduces the risk of developing cancer, in particular of the colon. Molecular pathology studies have revealed that COX-2 is expressed by cancer cells and cells of the tumor stroma during tumor progression and in response to chemotherapy or radiotherapy. Experimental studies have demonstrated that COX-2 over expression promotes tumorigenesis, and that NSAIDs and COX-2 inhibitors suppress tumorigenesis and tumor progression. Clinical trials have shown that NSAIDs and COX-2 inhibitors suppress colon polyp formation and malignant progression in patients with familial adenomatous polyposis (FAP) syndrome. Recent advances in the understanding of the cellular and molecular mechanisms of the anti-cancer effects of NSAIDs and COX-2 inhibitors have demonstrated that these drugs target both tumor cells and the tumor vasculature. The therapeutic benefits of COX-2 inhibitors in the treatment of human cancer in combination with chemotherapy or radiotherapy are currently being tested in clinical trials. In this article we will review recent advances in the understanding of the anti-tumor mechanisms of these drugs and discuss their potential application in clinical oncology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent evidence indicates that B cells are required for susceptibility to infection with Leishmania major in BALB/c mice. In this study, we analyzed the role of the IL-10 produced by B cells in this process. We showed that B cells purified from the spleen of BALB/c mice produced IL-10 in response to stimulation with L. major in vitro. In vivo, early IL-10 mRNA expression is detected after L. major infection in B cells from draining lymph nodes of susceptible BALB/c, but not of resistant C57BL/6 mice. Although adoptive transfer of naive wild-type B cells prior to infection in B cell-deficient BALB/c mice restored Th2 cell development and susceptibility to infection with L. major of these otherwise resistant mice, adoptive transfer of IL-10(-/-) B cells mice did not. B cells stimulated by L. major, following in vitro or in vivo encounter, express the CD1d and CD5 molecules and the IL-10 produced by these cells downregulate IL-12 production by L. major-stimulated dendritic cells. These observations indicate that IL-10 secreting B cells are phenotypically and functionally regulatory B cells. Altogether these results demonstrate that the IL-10 produced by regulatory CD1d+ CD5+ B cells in response to L. major is critical for Th2 cell development in BALB/c mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A highly efficient synthesis of the biologically important fluorescent probe dansyl α-GalCer is presented. Key in our strategy is the incorporation of the fluorescent dansyl group at an early stage in the synthesis to facilitate in the monitoring and purification of intermediates via TLC and flash column chromatography, respectively, and the use of a high yielding α-selective glycosylation reaction between the phytosphingosine lipid and a galactosyl iodide donor. The ability of dansyl α-GalCer to activate iNKT cells and to serve as a fluorescent marker for the uptake of glycolipid by dendritic cells is also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human cytomegalovirus (CMV) infection may be a serious complication related to immunosuppression after solid organ transplantation. Due to their cytotoxicity, T-cells and natural killer (NK) cells target and clear the virus from CMV-infected cells. Although immunosuppressive drugs suppress T-cell proliferation and activation, they do not affect NK cells that are crucial for controlling the infection. The regulation of NK cells depends on a wide range of activating and inhibitory receptors such as the family of killer-cell immunoglobulin-like receptors (KIRs). Several human genetic studies have demonstrated the association of KIR genes with the clearance of infections. Since the respective activities of the different KIR proteins expressed by NK cells during CMV infection have not been extensively studied, we analyzed the expression of KIRs in a cohort of 22 CMV-IgG(+) renal transplant patients at the time of CMV reactivation, after antiviral therapy and 6 months later. Our data revealed a marked expression of KIR3DL1 during the acute phase of the reactivation. We set up an in vitro model in which NK cells, derived either from healthy donors or from transplanted patients, target allogeneic fibroblasts, CMV-infected or uninfected. Our results demonstrate a significant correlation between the lysis of CMV-infected fibroblasts and the expression of KIR3DL1. Blocking experiments with antibodies to MHC-I, to NKG2D and to NKG2C confirmed the importance of KIR3DL1. Consequently, our results suggest that KIR proteins and especially KIR3DL1 could play an important role during CMV-infection or CMV reactivation in immunosuppressed patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The antimicrobial metabolite 2,4-diacetylphloroglucinol (2,4-DAPG) contributes to the capacity of Pseudomonas fluorescens strain CHA0 to control plant diseases caused by soilborne pathogens. A 2, 4-DAPG-negative Tn5 insertion mutant of strain CHA0 was isolated, and the nucleotide sequence of the 4-kb genomic DNA region adjacent to the Tn5 insertion site was determined. Four open reading frames were identified, two of which were homologous to phlA, the first gene of the 2,4-DAPG biosynthetic operon, and to the phlF gene encoding a pathway-specific transcriptional repressor. The Tn5 insertion was located in an open reading frame, tentatively named phlH, which is not related to known phl genes. In wild-type CHA0, 2, 4-DAPG production paralleled expression of a phlA'-'lacZ translational fusion, reaching a maximum in the late exponential growth phase. Thereafter, the compound appeared to be degraded to monoacetylphloroglucinol by the bacterium. 2,4-DAPG was identified as the active compound in extracts from culture supernatants of strain CHA0 specifically inducing phlA'-'lacZ expression about sixfold during exponential growth. Induction by exogenous 2,4-DAPG was most conspicuous in a phlA mutant, which was unable to produce 2, 4-DAPG. In a phlF mutant, 2,4-DAPG production was enhanced severalfold and phlA'-'lacZ was expressed at a level corresponding to that in the wild type with 2,4-DAPG added. The phlF mutant was insensitive to 2,4-DAPG addition. A transcriptional phlA-lacZ fusion was used to demonstrate that the repressor PhlF acts at the level of transcription. Expression of phlA'-'lacZ and 2,4-DAPG synthesis in strain CHA0 was strongly repressed by the bacterial extracellular metabolites salicylate and pyoluteorin as well as by fusaric acid, a toxin produced by the pythopathogenic fungus Fusarium. In the phlF mutant, these compounds did not affect phlA'-'lacZ expression and 2, 4-DAPG production. PhlF-mediated induction by 2,4-DAPG and repression by salicylate of phlA'-'lacZ expression was confirmed by using Escherichia coli as a heterologous host. In conclusion, our results show that autoinduction of 2,4-DAPG biosynthesis can be countered by certain bacterial (and fungal) metabolites. This mechanism, which depends on phlF function, may help P. fluorescens to produce homeostatically balanced amounts of extracellular metabolites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nuclear factor of activated T cells (NFAT) family of transcription factors controls calcium signaling in T lymphocytes. In this study, we have identified a crucial regulatory role of the transcription factor NFATc2 in T cell-dependent experimental colitis. Similar to ulcerative colitis in humans, the expression of NFATc2 was up-regulated in oxazolone-induced chronic intestinal inflammation. Furthermore, NFATc2 deficiency suppressed colitis induced by oxazolone administration. This finding was associated with enhanced T cell apoptosis in the lamina propria and strikingly reduced production of IL-6, -13, and -17 by mucosal T lymphocytes. Further studies using knockout mice showed that IL-6, rather than IL-23 and -17, are essential for oxazolone colitis induction. Administration of hyper-IL-6 blocked the protective effects of NFATc2 deficiency in experimental colitis, suggesting that IL-6 signal transduction plays a major pathogenic role in vivo. Finally, adoptive transfer of IL-6 and wild-type T cells demonstrated that oxazolone colitis is critically dependent on IL-6 production by T cells. Collectively, these results define a unique regulatory role for NFATc2 in colitis by controlling mucosal T cell activation in an IL-6-dependent manner. NFATc2 in T cells thus emerges as a potentially new therapeutic target for inflammatory bowel diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The control of body weight and of blood glucose concentrations depends on the exquisite coordination of the function of several organs and tissues, in particular the liver, muscle and fat. These organs and tissues have major roles in the use and storage of nutrients in the form of glycogen or triglycerides and in the release of glucose or free fatty acids into the blood, in periods of metabolic needs. These mechanisms are tightly regulated by hormonal and nervous signals, which are generated by specialized cells that detect variations in blood glucose or lipid concentrations. The hormones insulin and glucagon not only regulate glycemic levels through their action on these organs and the sympathetic and parasympathetic branches of the autonomic nervous system, which are activated by glucose or lipid sensors, but also modulate pancreatic hormone secretion and liver, muscle and fat glucose and lipid metabolism. Other signaling molecules, such as the adipocyte hormones leptin and adiponectin, have circulating plasma concentrations that reflect the level of fat stored in adipocytes. These signals are integrated at the level of the hypothalamus by the melanocortin pathway, which produces orexigenic and anorexigenic neuropeptides to control feeding behavior, energy expenditure and glucose homeostasis. Work from several laboratories, including ours, has explored the physiological role of glucose as a signal that regulates these homeostatic processes and has tested the hypothesis that the mechanism of glucose sensing that controls insulin secretion by the pancreatic beta-cells is also used by other cell types. I discuss here evidence for these mechanisms, how they integrate signals from other nutrients such as lipids and how their deregulation may initiate metabolic diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Metabolic flux profiling based on the analysis of distribution of stable isotope tracer in metabolites is an important method widely used in cancer research to understand the regulation of cell metabolism and elaborate new therapeutic strategies. Recently, we developed software Isodyn, which extends the methodology of kinetic modeling to the analysis of isotopic isomer distribution for the evaluation of cellular metabolic flux profile under relevant conditions. This tool can be applied to reveal the metabolic effect of proapoptotic drug edelfosine in leukemia Jurkat cell line, uncovering the mechanisms of induction of apoptosis in cancer cells. Results: The study of 13C distribution of Jukat cells exposed to low edelfosine concentration, which induces apoptosis in ¿5% of cells, revealed metabolic changes previous to the development of apoptotic program. Specifically, it was found that low dose of edelfosine stimulates the TCA cycle. These metabolic perturbations were coupled with an increase of nucleic acid synthesis de novo, which indicates acceleration of biosynthetic and reparative processes. The further increase of the TCA cycle fluxes, when higher doses of drug applied, eventually enhance reactive oxygen species (ROS) production and trigger apoptotic program. Conclusion: The application of Isodyn to the analysis of mechanism of edelfosine-induced apoptosis revealed primary drug-induced metabolic changes, which are important for the subsequent initiation of apoptotic program. Initiation of such metabolic changes could be exploited in anticancer therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background To demonstrate the tobacco industry rationale behind the "Spanish model" on non-smokers' protection in hospitality venues and the impact it had on some European and Latin American countries between 2006 and 2011. Methods Tobacco industry documents research triangulated against news and media reports. Results As an alternative to the successful implementation of 100% smoke-free policies, several European and Latin American countries introduced partial smoking bans based on the so-called "Spanish model", a legal framework widely advocated by parts of the hospitality industry with striking similarities to "accommodation programmes" promoted by the tobacco industry in the late 1990s. These developments started with the implementation of the Spanish tobacco control law (Ley 28/2005) in 2006 and have increased since then. Conclusion The Spanish experience demonstrates that partial smoking bans often resemble tobacco industry strategies and are used to spread a failed approach on international level. Researchers, advocates and policy makers should be aware of this ineffective policy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recombinant secretory immunoglobulin A containing a bacterial epitope in domain I of the secretory component (SC) moiety can serve as a mucosal delivery vehicle triggering both mucosal and systemic responses (Corthésy, B., Kaufmann, M., Phalipon, A., Peitsch, M., Neutra, M. R., and Kraehenbuhl, J.-P. (1996) J. Biol. Chem. 271, 33670-33677). To load recombinant secretory IgA with multiple B and T epitopes and extend its biological functions, we selected, based on molecular modeling, five surface-exposed sites in domains II and III of murine SC. Loops predicted to be exposed at the surface of SC domains were replaced with the DYKDDDDK octapeptide (FLAG). Another two mutants were obtained with the FLAG inserted in between domains II and III or at the carboxyl terminus of SC. As shown by mass spectrometry, internal substitution of the FLAG into four of the mutants induced the formation of disulfide-linked homodimers. Three of the dimers and two of the monomers from SC mutants could be affinity-purified using an antibody to the FLAG, mapping them as candidates for insertion. FLAG-induced dimerization also occurred with the polymeric immunoglobulin receptor (pIgR) and might reflect the so-far nondemonstrated capacity of the receptor to oligomerize. By co-expressing in COS-7 cells and epithelial Caco-2 cells two pIgR constructs tagged at the carboxyl terminus with hexahistidine or FLAG, we provide the strongest evidence reported to date that the pIgR dimerizes noncovalently in the plasma membrane in the absence of polymeric IgA ligand. The implication of this finding is discussed in terms of IgA transport and specific antibody response at mucosal surfaces.