927 resultados para the Xilin River Basin
Resumo:
"A project of the Critical Trends Assessment Program."
Resumo:
"A project of the Critical Trends Assessment Program (CTAP and the Ecosystems Program of the Illinois Department of Natural Resources (IDNR)"--P. [2] of cover.
Resumo:
"November 29, 1967."
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
The purpose of this research was to investigate the influence of elevation and other terrain characteristics over the spatial and temporal distribution of rainfall. A comparative analysis was conducted between several methods of spatial interpolations using mean monthly precipitation values in order to select the best. Following those previous results it was possible to fit an Artificial Neural Network model for interpolation of monthly precipitation values for a period of 20 years, with input values such as longitude, latitude, elevation, four geomorphologic characteristics and anchored by seven weather stations, it reached a high correlation coefficient (r=0.85). This research demonstrated a strong influence of elevation and other geomorphologic variables over the spatial distribution of precipitation and the agreement that there are nonlinear relationships. This model will be used to fill gaps in time-series of monthly precipitation, and to generate maps of spatial distribution of monthly precipitation at a resolution of 1km2.
Resumo:
Water constitutes the basic resource for life. Management of coastal aquifers, which are the important sources of freshwater that feed the rapid economic growth of the region is facing increasing challenges. A large portion of the global population inhabits the coastal and adjoining areas leading to a high demand for water both surface and ground water resources of coastal tracts. With increasing population this puts significant stress on water resources of many of the coastal tracts of the world. Several recent studies have indicated that coastal aquifers of Cenozoic age are globally under threat due to several reasons. Climate change is expected to affect the freshwater resources of coastal aquifers, which in turn will affect half of the global population residing in coastal areas. Sea-level rise will induce landward migration of the freshwater-saltwater transition zone, i.e., seawater or saltwater intrusion, jeopardizing freshwater availability. In order to facilitate the management of fresh coastal groundwater resources, a comprehensive understanding of the SLR-SWI relationship is crucial.
Resumo:
Limnoperna fortunei (Dunker, 1857) is a small mytilid native to Southeast Asia. It was introduced in South America in early 1990 and has dispersed from Argentina to central Brazil, and until 2014 has been restricted mainly to the Paraná and Uruguay river basins. The present note reports the occurrence of Limnoperna fortunei for the first time in the São Francisco River basin in northeastern Brazil. The establishment of L. fortunei in these regions will require close attention from the government and also by society.
Resumo:
Aquatic ecosystems exhibit different vulnerabilities to anthropogenic disturbances. I examined this problem in the Upper Napo River Basin (UNRB), Ecuador. I ranked from 1 to 5 aquatic ecosystem uniqueness, health and threats. I stratified the basin into five Ecological Drainage Units (EDU), 48 Aquatic Ecological Systems (AES), and 203 macrohabitats. I found main threats (habitat conversion/degradation, land development, mining, oil industries, and water diversion) cover 54% of the UNRB, but have different scores and extents in each EDU. I assessed the health of 111 AESs, under three land use treatments, by analyzing the streamside zone, physical forms, water quality, aquatic life, and hydrology. Overall, health of AESs varied from 5 to 2.58, with 5 being the highest level of health. Threats and health of AESs were inversely related (F=34.119, P
Resumo:
2008
Resumo:
2008
Resumo:
The Jaíba Irrigated Perimeter is a large irrigated agriculturearea, located in the region Forest Jaíba between the SãoFrancisco and Verde Grande rivers, in the Brazilian semi-arid region. In 2014, irrigators thisthe region face losses in theinterruption of new plantings in irrigated areas due to water scarcity. The objective ofthis study is combine the modelto estimate the Monteith BIO with the SAFER algorithm in the case of obtaining ET, to analyze the dynamics of naturalvegetation and irrigated crops in water scarcity period. For application of the model are necessary data frommeteorological stations and satellite images. Were used 23satellite images of MODIS withspatial resolution of 250mand temporal 16 days, of 2014 year. For analyze the results,we used central pivots irrigation mask of Minas Geraisstate, Brazil. In areas with irrigated agriculture with central pivot, the mean values of BIO over the year 2014 were88.96 kg.ha-1.d-1. The highest values occurred between April 23 and May 8, with BIO 139 kg.ha-1.d-1. For areas withnatural vegetation, the average BIO was 88.34 kg.ha-1.d-1with lower values in September. Estimates of ET varied withthe lowest values of ET observedin natural vegetation 1,91±1,22 mm.d-1and the highest values in irrigated area isobserved 3,51±0,97 mm.d-1. Results of this study can assist in monitoring of river basins, contributing to themanagement irrigated agriculture, with the trend of scarcity of water resources and increasing conflicts for the wateruse.
Resumo:
The Namoi River winds its way through 42 000 square kilometres of blacksoil plain in the north east of New South Wales. Fed by the rivers of the western slopes of the Great Dividing Range, it contributes about one quarter of the Darling River’s flow. The river, its floodplain, wetlands, swamps and waterholes, are the traditional lands of the Gamilaraay* people. The Namoi is a very different river to the one the Gamilaraay people once knew and fished...