915 resultados para testicular germ cell tumors


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background and Study Aim Intra- and paraventricular tumors are frequently associated with cerebrospinal fluid (CSF) pathway obstruction. Thus the aim of an endoscopic approach is to restore patency of the CSF pathways and to obtain a tumor biopsy. Because endoscopic tumor biopsy may increase tumor cell dissemination, this study sought to evaluate this risk. Patients, Materials, and Methods Forty-four patients who underwent endoscopic biopsies for ventricular or paraventricular tumors between 1993 and 2011 were included in the study. Charts and images were reviewed retrospectively to evaluate rates of adverse events, mortality, and tumor cell dissemination. Adverse events, mortality, and tumor cell dissemination were evaluated. Results Postoperative clinical condition improved in 63.0% of patients, remained stable in 30.4%, and worsened in 6.6%. One patient (2.2%) had a postoperative thalamic stroke leading to hemiparesis and hemineglect. No procedure-related deaths occurred. Postoperative tumor cell dissemination was observed in 14.3% of patients available for follow-up. Conclusions For patients presenting with occlusive hydrocephalus due to tumors in or adjacent to the ventricular system, endoscopic CSF diversion is the procedure of first choice. Tumor biopsy in the current study did not affect safety or efficacy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background. The rise in survival rates along with more detailed follow-up using sophisticated imaging studies among non-small lung cancer (NSCLC) patients has led to an increased risk of second primary tumors (SPT) among these cases. Population and hospital based studies of lung cancer patients treated between 1974 and 1996 have found an increasing risk over time for the development of all cancers following treatment of non-small cell lung cancer (NSCLC). During this time the primary modalities for treatment were surgery alone, radiation alone, surgery and post-operative radiation therapy, or combinations of chemotherapy and radiation (sequentially or concurrently). There is limited information in the literature about the impact of treatment modalities on the development of second primary tumors in these patients. ^ Purpose. To investigate the impact of treatment modalities on the risk of second primary tumors in patients receiving treatment with curative intent for non-metastatic (Stage I–III) non-small cell lung cancer (NSCLC). ^ Methods. The hospital records of 1,095 NSCLC patients who were diagnosed between 1980–2001 and received treatment with curative intent at M.D. Anderson Cancer Center with surgery alone, radiation alone (with a minimum total radiation dose of at least 45Gy), surgery and post-operative radiation therapy, radiation therapy in combination with chemotherapy or surgery in combination with chemotherapy and radiation were retrospectively reviewed. A second primary malignancy was be defined as any tumor histologically different from the initial cancer, or of another anatomic location, or a tumor of the same location and histology as the initial tumor having an interval between cancers of at least five years. Only primary tumors occurring after treatment for NSCLC will qualified as second primary tumors for this study. ^ Results. The incidence of second primary tumor was 3.3%/year and the rate increased over time following treatment. The type of NSCLC treatment was not found to have a striking effect upon SPT development. Increased rates were observed in the radiation only and chemotherapy plus radiation treatment groups; but, these increases did not exceed expected random variation. Higher radiation treatment dose, patient age and weight loss prior to index NSCLC treatment were associated with higher SPT development. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cell-based therapies have demonstrated potency and efficacy as cancer treatment modalities. T cells can be dichotomized by their T cell receptor (TCR) complexes where alpha/beta T cells (95% of T cells) and gamma/delta T cells (+T cells proliferated to clinically significant numbers and ROR1+ tumor cells were effectively targeted and killed by both ROR1-specific CAR+ T cell populations, although ROR1RCD137 were superior to ROR1RCD28 in clearance of leukemia xenografts in vivo. The second specific aim focused on generating bi-specific CD19-specific CAR+ gamma/delta T cells with polyclonal TCRgamma/delta repertoire on CD19+ artificial antigen presenting cells (aAPC). Enhanced cytolysis of CD19+ leukemia was observed by CAR+ gamma/delta T cells compared to CARneg gamma/delta T cells, and leukemia xenografts were significantly reduced compared to control mice in vivo. The third specific aim looked at the broad anti-tumor effects of polyclonal gamma/delta T cells expanded on aAPC without CAR+ T cells, where Vdelta1, Vdelta2, and Vdelta3 populations had naïve, effector memory, and central memory phenotypes and effector function strength in the following order: Vdelta2>Vdelta3>Vdelta1. Polyclonal gamma/delta T cells eliminated ovarian cancer xenografts in vivo and increased survival compared to control mice. Thus, translating these methodologies to clinical trials will provide cancer patients novel, safe, and effective options for their treatment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The non-Hodgkin's B cell lymphomas are a diverse group of neoplastic diseases. The incidence rate of the malignant tumors has been rising rapidly over the past twenty years in the United States and worldwide. The lack of insight to pathogenesis of the disease poses a significant problem in the early detection and effective treatment of the human malignancies. These studies attempted to investigate the molecular basis of pathogenesis of the human high grade B cell non-Hodgkin's lymphomas with a reverse genetic approach. The specific objective was to clone gene(s) which may play roles in development and progression of human high grade B cell non-Hodgkin's lymphomas.^ The messenger RNAs from two high grade B cell lymphoma lines, CJ and RR, were used for construction of cDNA libraries. Differential screening of the derived cDNA libraries yielded a 1.4 kb cDNA clone. The gene, designated as NHL-B1.4, was shown to be highly amplified and over-expressed in the high grade B cell lymphoma lines. It was not expressed in the peripheral blood lymphoid cells from normal donors. However, it was inducible in peripheral blood T lymphocytes by a T cell mitogen, PHA, but could not be activated in normal B cells by B cell mitogen PMA. Further molecular characterization revealed that the gene may have been rearranged in the RR and some other B cell lymphoma lines. The coding capacity of the cDNA has been confirmed by a rabbit reticulocyte lysate and wheat germ protein synthesis system. A recombinant protein with a molecular weight of approximate 30 kDa was visualized in autoradiogram. Polyclonal antisera have been generated by immunization of two rabbits with the NHL-B1.4 recombinant protein produced in the E. coli JM109. The derived antibody can recognize a natural protein with molecular weight of 49 kDa in cell lysate of activated peripheral T lymphocytes of normal donors and both the cell lysate and supernatant of RR B cell lymphoma lines. The possible biologic functions of the molecule has been tested preliminarily in a B lymphocyte proliferation assay. It was found that the Q-sepharose chromatograph purified supernatant of COS cell transfection could increase tritiated thymidine uptake by B lymphocytes but not by T lymphocytes. The B cell stimulatory activity of the supernatant of COS cell tranfection could be neutralized by the polyclonal antisera, indicating that the NHL-B1.4 gene product may be a molecule with BCGF-like activity.^ The expression profiles of NHL-B1.4 in normal and neoplastic lymphoid cells were consistent with the current B lymphocyte activation model and autocrine hypothesis of high grade B cell lymphomagenesis. These results suggested that the NHL-B1.4 cDNA may be a disease-related gene of human high grade B cell lymphomas, which may codes for a postulated B cell autocrine growth factor. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The drought of progress in clinical brain tumor therapy provides an impetus for developing new treatments as well as methods for testing therapeutics in animal models. The inability of traditional assays to simultaneously measure tumor size, location, growth kinetics, and cell kill achieved by a treatment complicates the interpretation of therapy experiments in animal models. To address these issues, tumor volume measurements obtained from serial magnetic resonance images were used to noninvasively estimate cell kill values in individual rats with intracerebral 9L tumors after treatment with 0.5, 1, or 2 × LD10 doses of 1,3-bis(2-chloroethyl)-1-nitrosourea. The calculated cell kill values were consistently lower than those reported using traditional assays. A dose-dependent increase in 9L tumor doubling time after treatment was observed that significantly contributed to the time required for surviving cells to repopulate the tumor mass. This study reveals that increases in animal survival are not exclusively attributable to the fraction of tumor cells killed but rather are a function of the cell kill and repopulation kinetics, both of which vary with treatment dose.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have recently shown that VEGF functions as a survival factor for newly formed vessels during developmental neovascularization, but is not required for maintenance of mature vessels. Reasoning that expanding tumors contain a significant fraction of newly formed and remodeling vessels, we examined whether abrupt withdrawal of VEGF will result in regression of preformed tumor vessels. Using a tetracycline-regulated VEGF expression system in xenografted C6 glioma cells, we showed that shutting off VEGF production leads to detachment of endothelial cells from the walls of preformed vessels and their subsequent death by apoptosis. Vascular collapse then leads to hemorrhages and extensive tumor necrosis. These results suggest that enforced withdrawal of vascular survival factors can be applied to target preformed tumor vasculature in established tumors. The system was also used to examine phenotypes resulting from over-expression of VEGF. When expression of the transfected VEGF cDNA was continuously “on,” tumors became hyper-vascularized with abnormally large vessels, presumably arising from excessive fusions. Tumors were significantly less necrotic, suggesting that necrosis in these tumors is the result of insufficient angiogenesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In search of novel genes expressed in metastatic prostate cancer, we subtracted cDNA isolated from benign prostatic hypertrophic tissue from cDNA isolated from a prostate cancer xenograft model that mimics advanced disease. One novel gene that is highly expressed in advanced prostate cancer encodes a 339-amino acid protein with six potential membrane-spanning regions flanked by hydrophilic amino- and carboxyl-terminal domains. This structure suggests a potential function as a channel or transporter protein. This gene, named STEAP for six-transmembrane epithelial antigen of the prostate, is expressed predominantly in human prostate tissue and is up-regulated in multiple cancer cell lines, including prostate, bladder, colon, ovarian, and Ewing sarcoma. Immunohistochemical analysis of clinical specimens demonstrates significant STEAP expression at the cellcell junctions of the secretory epithelium of prostate and prostate cancer cells. Little to no staining was detected at the plasma membranes of normal, nonprostate human tissues, except for bladder tissue, which expressed low levels of STEAP at the cell membrane. Protein analysis located STEAP at the cell surface of prostate-cancer cell lines. Our results support STEAP as a cell-surface tumor-antigen target for prostate cancer therapy and diagnostic imaging.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Vaccination with cytokine-producing tumor cells generates potent immune responses against tumors outside the central nervous system (CNS). The CNS, however, is a barrier to allograft and xenograft rejection, and established tumors within the CNS have failed to respond to other forms of systemic immunotherapy. To determine what barriers the "immunologically privileged" CNS would pose to cytokine-assisted tumor vaccines and what cytokines would be most efficacious against tumors within the CNS, we irradiated B16 murine melanoma cells producing murine interleukin 2 (IL-2), IL-3, IL-4, IL-6, gamma-interferon, or granulocyte-macrophage colony stimulating factor (GM-CSF) and used these cells as subcutaneous vaccines against tumors within the brain. Under conditions where untransfected B16 cells had no effect, cells producing IL-3, IL-6, or GM-CSF increased the survival of mice challenged with viable B16 cells in the brain. Vaccination with B16 cells producing IL-4 or gamma-interferon had no effect, and vaccination with B16 cells producing IL-2 decreased survival time. GM-CSF-producing vaccines were also able to increase survival in mice with pre-established tumors. The response elicited by GM-CSF-producing vaccines was found to be specific to tumor type and to be abrogated by depletion of CD8+ cells. Unlike the immunity generated against subcutaneous tumors by GM-CSF, however, the effector responses generated against tumors in the CNS were not dependent on CD4+ cells. These data suggest that cytokine-producing tumor cells are very potent stimulators of immunity against tumors within the CNS, but effector responses in the CNS may be different from those obtained against subcutaneous tumors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Most models of tumorigenesis assume that the tumor grows by increased cell division. In these models, it is generally supposed that daughter cells behave as do their parents, and cell numbers have clear potential for exponential growth. We have constructed simple mathematical models of tumorigenesis through failure of programmed cell death (PCD) or differentiation. These models do not assume that descendant cells behave as their parents do. The models predict that exponential growth in cell numbers does sometimes occur, usually when stem cells fail to die or differentiate. At other times, exponential growth does not occur: instead, the number of cells in the population reaches a new, higher equilibrium. This behavior is predicted when fully differentiated cells fail to undergo PCD. When cells of intermediate differentiation fail to die or to differentiate further, the values of growth parameters determine whether growth is exponential or leads to a new equilibrium. The predictions of the model are sensitive to small differences in growth parameters. Failure of PCD and differentiation, leading to a new equilibrium number of cells, may explain many aspects of tumor behavior--for example, early premalignant lesions such as cervical intraepithelial neoplasia, the fact that some tumors very rarely become malignant, the observation of plateaux in the growth of some solid tumors, and, finally, long lag phases of growth until mutations arise that eventually result in exponential growth.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mutations in the p53 gene are implicated in the pathogenesis of half of all human tumors. We have developed a simple functional assay for p53 mutation in which human p53 expressed in Saccharomyces cerevisiae activates transcription of the ADE2 gene. Consequently, yeast colonies containing wild-type p53 are white and colonies containing mutant p53 are red. Since this assay tests the critical biological function of p53, it can distinguish inactivating mutations from functionally silent mutations. By combining this approach with gap repair techniques in which unpurified p53 reverse transcription-PCR products are cloned by homologous recombination in vivo it is possible to screen large numbers of samples and multiple clones per sample for biologically important mutations. This means that mutations can be detected in tumor specimens contaminated with large amounts of normal tissue. In addition, the assay detects temperature-sensitive mutants, which give pink colonies. We show here that this form of p53 functional assay can be used rapidly to detect germline mutations in blood samples, somatic mutations in tumors, and mutations in cell lines.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

NlmCategory="UNASSIGNED">Glycolytic activity in T cells governs T cell responses by controlling various cellular processes, including proliferation, survival, and effector functions. We recently showed that the tumor microenvironment diminishes T cell antitumor responses by depriving glucose to infiltrating T cells. Moreover, metabolic rewiring tumor-reactive T cells sustain T cell metabolic fitness and antitumor responses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Adoptive immunotherapy and oncolytic virotherapy are two promising strategies for treating primary and metastatic malignant brain tumors. We demonstrate the ability of adoptively transferred tumor-specific T cells to rapidly mediate the clearance of established brain tumors in several mouse models. Similar to the clinical situation, tumor recurrences are frequent and result from immune editing of tumors. T cells can eliminate antigen-expressing tumor cells but are not effective against antigen loss variant (ALV) cancer cells that multiply and repopulate a tumor. We show that the level of tumor antigen present affects the success of adoptive T cell therapy. When high levels of antigen are present, tumor stromal cells such as microglia and macrophages present tumor peptide on their surface. As a result, T cells directly eliminate cancer cells and cross-presenting stromal cells and indirectly eliminate ALV cells. We were able to show the first direct evidence of tumor antigen cross-presentation by CD11b+ stromal cells in the brain using soluble, high-affinity T cell receptor monomers. Strategies that target brain tumor stroma or increase antigen shedding from tumor cells leading to increased crosspresentation by stromal cells may improve the clinical success of T cell adoptive therapies. We evaluated one potential strategy to complement adoptive T cell therapy by characterizing the oncolytic effects of myxoma virus (MYXV) in a syngeneic mouse brain tumor model of metastatic melanoma. MYXV is a rabbit poxvirus with strict species tropism for European rabbits. MYXV can also infect mouse and human cancer cell lines due to signaling defects in innate antiviral mechanisms and hyperphosphorylation of Akt. MYXV kills B16.SIY melanoma cells in vitro, and intratumoral injection of virus leads to robust, selective and transient infection of the tumor. We observed that virus treatment recruits innate immune cells iii to the tumor, induces TNFα and IFNβ production in the brain, and results in limited oncolytic effects in vivo. To overcome this, we evaluated the safety and efficacy of co-administering 2C T cells, MYXV, and neutralizing antibodies against IFNβ. Mice that received the triple combination therapy survived significantly longer with no apparent side effects, but eventually relapsed. Based on these findings, methods to enhance viral replication in the tumor and limit immune clearance of the virus will be pursued. We conclude that myxoma virus should be further explored as a vector for transient delivery of therapeutic genes to a tumor to enhance T cell responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

KRAS activation and PTEN inactivation are frequent events in endometrial tumorigenesis, occurring in 10% to 30% and 26% to 80% of endometrial cancers, respectively. Because we have recently shown activating mutations in fibroblast growth factor receptor 2 (FGFR2) in 16% of endometrioid endometrial cancers, we sought to determine the genetic context in which FGFR2 mutations occur. Analysis of 116 primary endometrioid endometrial cancers revealed that FGFR2 and KRAS mutations were mutually exclusive, whereas FGFR2 mutations were seen concomitantly with PTEN mutations. Here, we show that shRNA knockdown of FGFR2 or treatment with a pan-FGFR inhibitor, PD173074, resulted in cell cycle arrest and induction of cell death in endometrial cancer cells with activating mutations in FGFR2. This cell death in response to FGFR2 inhibition occurred within the context of loss-of-function mutations in PTEN and constitutive AKT phosphorylation, and was associated with a marked reduction in extracellular signal-regulated kinase 1/2 activation. Together, these data suggest that inhibition of FGFR2 may be a viable therapeutic option in endometrial tumors possessing activating mutations in FGFR2, despite the frequent abrogation of PTEN in this cancer type.