877 resultados para system selection and implementation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A greedy technique is proposed to construct parsimonious kernel classifiers using the orthogonal forward selection method and boosting based on Fisher ratio for class separability measure. Unlike most kernel classification methods, which restrict kernel means to the training input data and use a fixed common variance for all the kernel terms, the proposed technique can tune both the mean vector and diagonal covariance matrix of individual kernel by incrementally maximizing Fisher ratio for class separability measure. An efficient weighted optimization method is developed based on boosting to append kernels one by one in an orthogonal forward selection procedure. Experimental results obtained using this construction technique demonstrate that it offers a viable alternative to the existing state-of-the-art kernel modeling methods for constructing sparse Gaussian radial basis function network classifiers. that generalize well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The purpose of this paper is to address a classic problem – pattern formation identified by researchers in the area of swarm robotic systems – and is also motivated by the need for mathematical foundations in swarm systems. Design/methodology/approach: The work is separated out as inspirations, applications, definitions, challenges and classifications of pattern formation in swarm systems based on recent literature. Further, the work proposes a mathematical model for swarm pattern formation and transformation. Findings: A swarm pattern formation model based on mathematical foundations and macroscopic primitives is proposed. A formal definition for swarm pattern transformation and four special cases of transformation are introduced. Two general methods for transforming patterns are investigated and a comparison of the two methods is presented. The validity of the proposed models, and the feasibility of the methods investigated are confirmed on the Traer Physics and Processing environment. Originality/value: This paper helps in understanding the limitations of existing research in pattern formation and the lack of mathematical foundations for swarm systems. The mathematical model and transformation methods introduce two key concepts, namely macroscopic primitives and a mathematical model. The exercise of implementing the proposed models on physics simulator is novel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A dynamic recurrent neural network (DRNN) that can be viewed as a generalisation of the Hopfield neural network is proposed to identify and control a class of control affine systems. In this approach, the identified network is used in the context of the differential geometric control to synthesise a state feedback that cancels the nonlinear terms of the plant yielding a linear plant which can then be controlled using a standard PID controller.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An algorithm for solving nonlinear discrete time optimal control problems with model-reality differences is presented. The technique uses Dynamic Integrated System Optimization and Parameter Estimation (DISOPE), which achieves the correct optimal solution in spite of deficiencies in the mathematical model employed in the optimization procedure. A version of the algorithm with a linear-quadratic model-based problem, implemented in the C+ + programming language, is developed and applied to illustrative simulation examples. An analysis of the optimality and convergence properties of the algorithm is also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analyzes the use of linear and neural network models for financial distress classification, with emphasis on the issues of input variable selection and model pruning. A data-driven method for selecting input variables (financial ratios, in this case) is proposed. A case study involving 60 British firms in the period 1997-2000 is used for illustration. It is shown that the use of the Optimal Brain Damage pruning technique can considerably improve the generalization ability of a neural model. Moreover, the set of financial ratios obtained with the proposed selection procedure is shown to be an appropriate alternative to the ratios usually employed by practitioners.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DISOPE is a technique for solving optimal control problems where there are differences in structure and parameter values between reality and the model employed in the computations. The model reality differences can also allow for deliberate simplification of model characteristics and performance indices in order to facilitate the solution of the optimal control problem. The technique was developed originally in continuous time and later extended to discrete time. The main property of the procedure is that by iterating on appropriately modified model based problems the correct optimal solution is achieved in spite of the model-reality differences. Algorithms have been developed in both continuous and discrete time for a general nonlinear optimal control problem with terminal weighting, bounded controls and terminal constraints. The aim of this paper is to show how the DISOPE technique can aid receding horizon optimal control computation in nonlinear model predictive control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the last few years, load growth, increases in intermittent generation, declining technology costs and increasing recognition of the importance of customer behaviour in energy markets have brought about a change in the focus of Demand Response (DR) in Europe. The long standing programmes involving large industries, through interruptible tariffs and time of day pricing, have been increasingly complemented by programmes aimed at commercial and residential customer groups. Developments in DR vary substantially across Europe reflecting national conditions and triggered by different sets of policies, programmes and implementation schemes. This paper examines experiences within European countries as well as at European Union (EU) level, with the aim of understanding which factors have facilitated or impeded advances in DR. It describes initiatives, studies and policies of various European countries, with in-depth case studies of the UK, Italy and Spain. It is concluded that while business programmes, technical and economic potentials vary across Europe, there are common reasons as to why coordinated DR policies have been slow to emerge. This is because of the limited knowledge on DR energy saving capacities; high cost estimates for DR technologies and infrastructures; and policies focused on creating the conditions for liberalising the EU energy markets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a new system identification algorithm is introduced for Hammerstein systems based on observational input/output data. The nonlinear static function in the Hammerstein system is modelled using a non-uniform rational B-spline (NURB) neural network. The proposed system identification algorithm for this NURB network based Hammerstein system consists of two successive stages. First the shaping parameters in NURB network are estimated using a particle swarm optimization (PSO) procedure. Then the remaining parameters are estimated by the method of the singular value decomposition (SVD). Numerical examples including a model based controller are utilized to demonstrate the efficacy of the proposed approach. The controller consists of computing the inverse of the nonlinear static function approximated by NURB network, followed by a linear pole assignment controller.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Armed with the ‘equity’ and ‘conservation’ arguments that have a deep resonance with farming communities, developing countries are crafting a range of measures designed to protect farmers’ access to innovations, reward their contributions to the conservation and enhancement of plant genetic resources and provide incentives for sustained on-farm conservation. These measures range from the commericialization of farmers’ varieties to the conferment of a set of legally enforceable rights on farming communities – the exercise of which is expected to provide economic rewards to those responsible for on-farm conservation and innovation. The rights-based approach has been the cornerstone of legislative provision for implementing farmers’ rights in most developing countries. In drawing up these measures, developing countries do not appear to have systematically examined or provided for the substantial institutional capacity required for the effective implementation of farmers’ rights provisions. The lack of institutional capacity threatens to undermine any prospect of serious implementation of these provisions. More importantly, the expectation that significant incentives for on-farm conservation and innovation will flow from these ‘rights’ may be based on a flawed understanding of the economics of intellectual property rights. While farmers’ rights may provide only limited rewards for conservation, they may still have the effect of diluting the incentives for innovative institutional breeding programs – with the private sector increasingly relying on non-IPR instruments to profit from innovation. The focus on a rights-based approach may also draw attention away from alternative stewardship-based approaches to the realization of farmers’ rights objectives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents two schemes of measuring the linear and angular kinematics of a rigid body using a kinematically redundant array of triple-axis accelerometers with potential applications in biomechanics. A novel angular velocity estimation algorithm is proposed and evaluated that can compensate for angular velocity errors using measurements of the direction of gravity. Analysis and discussion of optimal sensor array characteristics are provided. A damped 2 axis pendulum was used to excite all 6 DoF of the a suspended accelerometer array through determined complex motion and is the basis of both simulation and experimental studies. The relationship between accuracy and sensor redundancy is investigated for arrays of up to 100 triple axis (300 accelerometer axes) accelerometers in simulation and 10 equivalent sensors (30 accelerometer axes) in the laboratory test rig. The paper also reports on the sensor calibration techniques and hardware implementation.