915 resultados para surface plasmon
Resumo:
对表面等离子体激元共振(surface plasmon resonance, SPR)的原理和在生物学研究方面的应用进行了综述。这种技术可以直接原位、实时地跟踪生物学实验研究系统, 而不需要附加参数如进行标记等手段, 具有高敏感性, 也可以连续监测吸附或解吸附过程。目前有关的应用涉及到生物学结合分析、动力学及亲和力测定、免疫识别研究、结构与活性研究和核酸研究等多个领域。
Resumo:
With the size of transistors approaching the sub-nanometer scale and Si-based photonics pinned at the micrometer scale due to the diffraction limit of light, we are unable to easily integrate the high transfer speeds of this comparably bulky technology with the increasingly smaller architecture of state-of-the-art processors. However, we find that we can bridge the gap between these two technologies by directly coupling electrons to photons through the use of dispersive metals in optics. Doing so allows us to access the surface electromagnetic wave excitations that arise at a metal/dielectric interface, a feature which both confines and enhances light in subwavelength dimensions - two promising characteristics for the development of integrated chip technology. This platform is known as plasmonics, and it allows us to design a broad range of complex metal/dielectric systems, all having different nanophotonic responses, but all originating from our ability to engineer the system surface plasmon resonances and interactions. In this thesis, we demonstrate how plasmonics can be used to develop coupled metal-dielectric systems to function as tunable plasmonic hole array color filters for CMOS image sensing, visible metamaterials composed of coupled negative-index plasmonic coaxial waveguides, and programmable plasmonic waveguide network systems to serve as color routers and logic devices at telecommunication wavelengths.
Resumo:
Ag nanoparticle embedded NaYF4:0.05Tb center dot chi Ce/ PVP (PVP stands for poly(vinyl pyrrolidone)) composite nanofibers have been prepared by electrospinning. A field emission scanning electron microscope and x-ray diffraction have been utilized to characterize the size, morphology and structure of the as-prepared electrospun nanofibers. Obvious photoluminescence (PL) of NaYF4:0.05Tb center dot 0.05Ce/PVP electrospun nanofibers due to the efficient energy transfer from Ce3+ to Tb3+ ions is observed. The PL intensity of the electrospun nanofibers decreases gradually with the addition of Ag nanoparticles. No obvious surface plasmon resonance enhanced luminescence is observed. The reasons for the weakening of the emission intensity with the addition of Ag nanoparticles have also been discussed in this work.
Resumo:
Huntington’s disease (HD) is a fatal autosomal dominant neurodegenerative disease. HD has no cure, and patients pass away 10-20 years after the onset of symptoms. The causal mutation for HD is a trinucleotide repeat expansion in exon 1 of the huntingtin gene that leads to a polyglutamine (polyQ) repeat expansion in the N-terminal region of the huntingtin protein. Interestingly, there is a threshold of 37 polyQ repeats under which little or no disease exists; and above which, patients invariably show symptoms of HD. The huntingtin protein is a 350 kDa protein with unclear function. As the polyQ stretch expands, its propensity to aggregate increases with polyQ length. Models for polyQ toxicity include formation of aggregates that recruit and sequester essential cellular proteins, or altered function producing improper interactions between mutant huntingtin and other proteins. In both models, soluble expanded polyQ may be an intermediate state that can be targeted by potential therapeutics.
In the first study described herein, the conformation of soluble, expanded polyQ was determined to be linear and extended using equilibrium gel filtration and small-angle X-ray scattering. While attempts to purify and crystallize domains of the huntingtin protein were unsuccessful, the aggregation of huntingtin exon 1 was investigated using other biochemical techniques including dynamic light scattering, turbidity analysis, Congo red staining, and thioflavin T fluorescence. Chapter 4 describes crystallization experiments sent to the International Space Station and determination of the X-ray crystal structure of the anti-polyQ Fab MW1. In the final study, multimeric fibronectin type III (FN3) domain proteins were engineered to bind with high avidity to expanded polyQ tracts in mutant huntingtin exon 1. Surface plasmon resonance was used to observe binding of monomeric and multimeric FN3 proteins with huntingtin.
Resumo:
The field of plasmonics exploits the unique optical properties of metallic nanostructures to concentrate and manipulate light at subwavelength length scales. Metallic nanostructures get their unique properties from their ability to support surface plasmons– coherent wave-like oscillations of the free electrons at the interface between a conductive and dielectric medium. Recent advancements in the ability to fabricate metallic nanostructures with subwavelength length scales have created new possibilities in technology and research in a broad range of applications.
In the first part of this thesis, we present two investigations of the relationship between the charge state and optical state of plasmonic metal nanoparticles. Using experimental bias-dependent extinction measurements, we derive a potential- dependent dielectric function for Au nanoparticles that accounts for changes in the physical properties due to an applied bias that contribute to the optical extinction. We also present theory and experiment for the reverse effect– the manipulation of the carrier density of Au nanoparticles via controlled optical excitation. This plasmoelectric effect takes advantage of the strong resonant properties of plasmonic materials and the relationship between charge state and optical properties to eluci- date a new avenue for conversion of optical power to electrical potential.
The second topic of this thesis is the non-radiative decay of plasmons to a hot-carrier distribution, and the distribution’s subsequent relaxation. We present first-principles calculations that capture all of the significant microscopic mechanisms underlying surface plasmon decay and predict the initial excited carrier distributions so generated. We also preform ab initio calculations of the electron-temperature dependent heat capacities and electron-phonon coupling coefficients of plasmonic metals. We extend these first-principle methods to calculate the electron-temperature dependent dielectric response of hot electrons in plasmonic metals, including direct interband and phonon-assisted intraband transitions. Finally, we combine these first-principles calculations of carrier dynamics and optical response to produce a complete theoretical description of ultrafast pump-probe measurements, free of any fitting parameters that are typical in previous analyses.
Resumo:
通过纳焦量级的飞秒激光在铬膜表面诱导出了周期性微结构,并使用入射飞秒激光和激发的表面等离子体波之间的干涉理论模拟分析了飞秒激光作用下铬膜表面的温度场分布情况,定性地解释了铬膜表面周期性微结构产生的机理。实验和理论结果有助于对飞秒激光和铬膜相互作用机制的理解。
Resumo:
We present a nondestructive technique to predict the refractive index profiles of isotropic planar waveguides, on which a thin gold film is deposited to as the cladding. The negative dielectric constant of the metal results in significant differences of effective indices between TE and TM modes. The two polarized modes and a surface plasmon resonance (SPR) with abundant information of the surface index can be used to construct the refractive index profiles of single-mode and two-mode waveguides at a fixed wavelength. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
近场超分辨纳米薄膜结构可以突破衍射极限实现纳米尺寸信息存储,是下一代海量存储技术的重要方案之一,也是纳米光子学研究中的热点。纳米膜层结构基于激光作用下的非线性局域光学效应实现超分辨。分析了超分辨近场薄膜结构突破衍射极限的光学原理,对超分辨纳米薄膜结构的表面等离子体激发特性、非线性光学特性、近场光学特性和超透镜效应等重要光学性质的最新研究进展做了系统介绍。
Resumo:
采用有损耗介质和色散介质的二维时域有限差分方法,数值模拟了以光波长514.5 nm的p偏振基模高斯光束为入射光源,激发Kretschmann型表面等离子体共振,并通过探针的局域场增强效应实现纳米光刻的新方法——探针诱导表面等离子体共振耦合纳米光刻.分别就探针与记录层的间距以及探针针尖大小,模拟分析了不同情况下探针的局域场增强效应和记录层表面的相对电场强度振幅分布.结果表明,探针工作在接触模式时,探针的局域场增强效应最明显,记录层表面的相对电场强度振幅的对比度最大;当探针针尖距记录层5 nm时,针尖下方记录层表面的相对电场强度振幅大于光刻临界值的分布宽度与针尖尺寸相近.
Resumo:
An acoustic plasmon is predicted to occur, in addition to the conventional two-dimensional (2D) plasmon, as the collective motion of a system of two types of electronic carriers coexisting in the same 2D band of extrinsic (doped or gated) graphene. The origin of this novel mode stems from the anisotropy present in the graphene band structure near the Dirac points K and K'. This anisotropy allows for the coexistence of carriers moving with two distinct Fermi velocities along the Gamma K and Gamma K' directions, which leads to two modes of collective oscillation: one mode in which the two types of carriers oscillate in phase with one another (this is the conventional 2D graphene plasmon, which at long wavelengths (q -> 0) has the same dispersion, q(1/2), as the conventional 2D plasmon of a 2D free electron gas), and the other mode found here corresponds to a low-frequency acoustic oscillation (whose energy exhibits at long-wavelengths a linear dependence on the 2D wavenumber q) in which the two types of carriers oscillate out of phase. This prediction represents a realization of acoustic
Resumo:
The full retarded electromagnetic force experienced by swift electrons moving parallel to planar boundaries is revisited, for both metallic and dielectric targets, with special emphasis on the consequences in electron microscopy experiments. The focus is placed on the sign of the transverse force experienced by the electron beam as a function of the impact parameter. For point probes, the force is found to be always attractive. The contribution of the induced magnetic field and the causality requirements of the target dielectric response, given by the Kramers-Kronig (K-K) relations, prove to be crucial issues at small impact parameters. For spatially extended probes, repulsive forces are predicted for close trajectories, in agreement with previous works. The force experienced by the target is also explored, with the finding that in insulators, the momentum associated to Cherenkov radiation (CR) is relevant at large impact parameters.
Resumo:
依据Z-scan技术,使用波长532nm的纳秒脉冲,研究了通过聚焦的飞秒脉冲诱导并辅以热处理得到的金纳米粒子析出的玻璃的非线性吸收.观察到金纳米粒子析出的玻璃具有饱和吸收特性.根据局域场效应,对实验结果拟合,得到在接近表面等离子体共振激发情况下,金纳米粒子三阶极化率虚部分别为Imχm^(3)=5.7×10^-7esu.玻璃样品中金纳米粒子的非线性响应主要起源于热电子贡献。
Resumo:
We obtain Au and Ag nanoparticles precipitated in glasses by irradiation of focused femtosecond pulses, and investigate the nonlinear absorptions of the glasses by using Z-scan technique with ns pulses at 532 nm. We observe the saturable absorption behavior for An nanoparticles precipitated glasses and the reverse saturable ones for Ag ones. We also obtain, by fitting to the experimental results in the light of the local field effect near and away from the surface plasmon resonance, chi(m)((3)) = 4.5 x 10(-7) and 5.9 x 10(-8) esu for m the imaginary parts of the third-order susceptibilities for Au and Ag nanoparticles, respectively. The nonlinear response of Au nanoparticles in the glass samples arises mainly from the hot-electron contribution and the saturation of the interband transitions near the surface plasmon resonance, whereas that of Ag nanoparticles in the glass samples from the interband transitions. These show that the obtained glasses can be used as optoelectronic devices suiting for different demands. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The structural, optical, electrical and physical properties of amorphous carbon deposited from the filtered plasma stream of a vacuum arc were investigated. The structure was determined by electron diffraction, neutron diffraction and energy loss spectroscopy and the tetrahedral coordination of the material was confirmed. The measurements gave a nearest neighbour distance of 1.53 Å, a bond angle of 110 and a coordination number of four. A model is proposed in which the compressive stress generated in the film by energetic ion impact produces pressure and temperature conditions lying well inside the region of the carbon phase diagram within which diamond is stable. The model is confirmed by measurements of stress and plasmon energy as a function of ion energy. The model also predicts the formation of sp2-rich materials on the surface owing to stress relaxation and this is confirmed by a study of the surface plasmon energy. Some nuclear magnetic resonance, infrared and optical properties are reported and the behaviour of diodes using tetrahedral amorphous carbon is discussed. © 1991.
Resumo:
Kinetic measurements of amyloid growth provide insight into the free energy landscape of this supramolecular process and are crucial in the search for potent inhibitors of the main disorders with which it is associated, including Alzheimer's and Parkinson's diseases and Type II diabetes. In recent years, a new class of surface-bound biosensor assays, e.g., those based on surface plasmon resonance (SPR) and the quartz crystal microbalance (QCM) have been established as extremely valuable tools for kinetic measurements of amyloid formation. Here we describe detailed protocols of how QCM techniques can be used to monitor the elongation of amyloid fibrils in real time and to study the influence of external factors on the kinetics of amyloid growth with unprecedented accuracy.