952 resultados para surface layer


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The tropical soil acidity is one of the main limiting factors for crop productivity. This study aimed to evaluate the effects of application of limestone dose to soil fertility, nutritional status of the crop, and productivity and quality of the fruits of mango, cultivar Keitt. The study was carried out at Selviria, state of Mato Grosso Sul, Brazil, in a Typic Haplustox (pH in CaCl2=4.7), cultivated with mango cultivar Keitt grafted on Coquinho pattern in the production phase (13years old). Treatments were composed of limestone doses (0, 1.55, 3.10, 4.65, and 6.20tha(-1)), arranged in blocks at random with three repetitions. The limestone was applied and incorporated in the surface layer of 0 to 5cm deep in the total area. We evaluated the chemical attributes of the soil [pH, hydrogen (H+) aluminum (Al), calcium (Ca), magnesium (Mg), potassium (K), and sum of bases and base saturation] at 16 and 28months after liming (layer 0 to 20cm deep), the nutrition of plants at 12months after liming, and quality of the fruit in two crop years. Liming promoted improvements in soil chemical attributes, reflected in the nutritional status, productivity, and quality of mango fruit. Also, there was a linear effect with the application of lime dose on the productivity of the fruit, but after the second year of evaluation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Heavy metals are found naturally in soils at low concentrations, but their content may be increased by human activity, making them one of the barriers in management of tropical soils. These chemical elements can be found in the composition of organic and inorganic fertilizers, insecticides, fungicides, mine tailings, and urban waste, and may cause serious damage to the environment and human health. Thus, adsorption studies are essential in assessing the behavior of heavy metals in the soil. The objective of this study was to evaluate the influence of soil chemical, particle size, and mineralogical properties on adsorption of cadmium (Cd), evaluated by Langmuir and Freundlich models, in Latossolos (Oxisols) with or without human activity. Soil samples were collected from the surface layer, 0.00-0.20 m, and chemical, particle size, and mineralogical analyzes were performed. In the adsorption study, concentrations of 0, 5, 25, 50, 100, 200, 300, and 400 mu g L-1 of Cd were used in the form of Cd(NO3)(2). The empirical mathematical models of Langmuir and Freundlich were used for construction of adsorption isotherms. Data were analyzed by means of multivariate statistical techniques, Cluster Analysis and Principal Component Analysis. The data from the adsorption experiment showed a good fit to the Langmuir and Freundlich models. Soils with a lower goethite/hematite ratio and greater cation exchange capacity and pH, showed higher maximum adsorption capacity of Cd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The adsorption behavior of the Tet-124 antimicrobial peptide and the Tet-124 peptide modified at the C- and N-terminus with the sequence glycine-3,4-dihydroxyphenylalanine-glycine (G-DOPA-G) on titanium surfaces was studied using quartz crystal micro balance with dissipation (QCM-D). At a low pH level (4.75) Tet-124 and Tet-124-G-DOPA-G form rigid layers. This is attributed to the electrostatic interactions of the positively charged lysine and arginine residues in the peptide sequence with the negatively charged titanium oxide layer. At an elevated pH level (6.9) Tet-124 shows a lower mass adsorption at the surface than Tet-124-G-DOPA-G. This is attributed to the interaction of the catechol due to the formation of complexes with the titanium oxide and titanium surface layer. The C terminal and N terminal modification with the sequence G-DOPA-G shows similar adsorption rate and mass adsorption coverage at saturation; however it is presented a more loosely layers on the G-DOPA-G-TeT-124. Fibroblast adhesion and the biocompatibility test of both the surfaces following modification with Tet-124-G-DOPA-G and the titanium alloy control showed similar results. In addition, no changes in the adhesion of E. coli bacteria due to the modification of the surface were detected.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia - FEIS

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated the influence of nutrient-rich oceanic waters in comparison to the estuarine outflow from Santos Bay (SE Brazil) on copepod abundance and production on the adjacent inner shelf. Zooplankton samples were collected with a Multinet in spring 2005 and in summer 2006. Copepod biomass was derived from length-weight regressions, and growth rates were estimated from empirical models. Altogether, 58 copepod taxa were identified. The highest abundances were due to small-sized organisms including nauplii, oncaeids and copepodids of paracalanids and clausocalanids. Biomass and secondary production mirrored copepod abundance, with Temora copepodids accompanying the above-mentioned taxa as major contributors. The contribution of naupliar biomass and production was low (2.2 and 3.8% of the total, respectively). The influence of the Santos Bay outflow was observed only in spring, when Coastal Water (CW) dominated at the study site; whereas in summer the inner shelf was occupied by CW in the surface layer and the oceanic South Atlantic Central Water (SACW) in the bottom layer. The SACW intrusion had more of an influence for the increase in copepod production than the Santos Bay plume. The distribution and dynamics of the oceanic water masses seemed to be the most important influence on copepod diversity and production at this subtropical site.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydrographic data collected during surveys carried out in austral winter 2003 and summer 2004 are used to analyze the distributions of temperature (T) and salinity (S) over the continental shelf and slope of eastern South America between 27 degrees S and 39 degrees S. The water mass structure and the characteristics of the transition between subantarctic and subtropical shelf water (STSW), referred to as the subtropical shelf front (STSF), as revealed by the vertical structure of temperature and salinity are discussed. During both surveys, the front intensifies downward and extends southwestward from the near coastal zone at 33 degrees S to the shelf break at 36 degrees S. In austral winter subantarctic shelf water (SASW), derived from the northern Patagonia shelf, forms a vertically coherent cold wedge of low salinity waters that locally separate the outer shelf STSW from the fresher inner shelf Plata Plume Water (PPW) derived from the Rio de la Plata. Winter T-S diagrams and cross-shelf T and S distributions indicate that mixtures of PPW and tropical water only occur beyond the northernmost extent of pure SASW, and form STSW and an inverted thermocline characteristic of this region. In summer 2004, dilution of Tropical water (TW) occurs at two distinct levels: a warm near surface layer, associated to PPW-TW mixtures, similar to but significantly warmer than winter STSW, and a colder (T similar to 16 degrees C) salinity minimum layer at 40-50 m depth, created by SASW-STSW mixtures across the STSF. In winter, the salinity distribution controls the density structure creating a cross-shore density gradient, which prevents isopycnal mixing across the STSF. Temperature stratification in summer induces a sharp pycnocline providing cross-shelf isopycnal connections across the STSF. Cooling and freshening of the upper layer observed at stations collected along the western edge of the Brazil Current suggest offshore export of shelf waters. Low T and S filaments, evident along the shelf break in the winter data, suggest that submesoscale eddies may enhance the property exchange across the shelf break. These observations suggest that as the subsurface shelf waters converge at the STSF, they flow southward along the front and are expelled offshore, primarily along the front axis. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Methane (CH4) emission from agricultural soils increases dramatically as a result of deleterious effect of soil disturbance and nitrogen fertilization on methanotrophic organisms; however, few studies have attempted to evaluate the potential of long-term conservation management systems to mitigate CH4 emissions in tropical and subtropical soils. This study aimed to evaluate the long-term effect (>19 years) of no-till grass- and legume-based cropping systems on annual soil CH4 fluxes in a formerly degraded Acrisol in Southern Brazil. Air sampling was carried out using static chambers and CH4 analysis by gas chromatography. Analysis of historical data set of the experiment evidenced a remarkable effect of high C- and N-input cropping systems on the improvement of biological, chemical, and physical characteristics of this no-tilled soil. Soil CH4 fluxes, which represent a net balance between consumption (-) and production (+) of CH4 in soil, varied from -40 +/- 2 to +62 +/- 78 mu g C m(-2) h(-1). Mean weighted contents of ammonium (NH4+-N) and dissolved organic carbon (DOC) in soil had a positive relationship with accumulated soil CH4 fluxes in the post-management period (r(2) = 0.95, p = 0.05), suggesting an additive effect of these nutrients in suppressing CH4 oxidation and stimulating methanogenesis, respectively, in legume-based cropping systems with high biomass input. Annual CH4 fluxes ranged from -50 +/- 610 to +994 +/- 105 g C ha(-1), which were inversely related to annual biomass-C input (r(2) = 0.99, p = 0.003), with the exception of the cropping system containing pigeon pea, a summer legume that had the highest biologically fixed N input (>300 kg ha(-1) yr(-1)). Our results evidenced a small effect of conservation management systems on decreasing CH4 emissions from soil, despite their significant effect restoring soil quality. We hypothesized that soil CH4 uptake strength has been off-set by an injurious effect of biologically fixed N in legume-based cropping systems on soil methanotrophic microbiota, and by the methanogenesis increase as a result of the O-2 depletion in niches of high biological activity in the surface layer of the no-tillage soil. (C) 2012 Elsevier B.V. All rights reserved.