978 resultados para sugar cane bagasse
Resumo:
The Potiguar basin has large fields of viscous oil where the used method for recovering is based on vapor injection; this operation is carried out by injecting vapor in the oilwell directly, without the protection of a revetment through thermal insulation, what causes its dilation and, consequently, cracks in the cement placed on the annular, and lost of hydraulic insulation; this crack is occasioned by the phenomenon of retrogression of the compressive resistance due to the conversion of the hydrated calcium silicate in phases calcium-rich, caused by the high temperatures in the wells, subjected to thermal recuperation. This work has evaluated the application of composite pastes with addition of residue of biomass of ground sugar-cane bagasse as anti-retrogression mineral admixture for cementation of oil-wells subjected to thermal recuperation. The addition of the mineral residue was carried out considering a relative amount of 10, 20, 30, 40 and 59% in relation to cement mass, trying to improve the microstructure of the paste, still being developed a reference paste only with cement and a paste with addition of 40% of silica flour - renowned material in the oil industry as anti-retrogression additive. Pozzolanic activity of the ash was evaluated through XRD, TG/DTG, as the resistance to compression, and it was also determined the physical and mechanical behavior of the pastes when submitted to cure at low temperatures (22 and 38º C); besides it was evaluated the behavior of the pastes when submitted to two cycles of cure at high temperature (280ºC) and pressure (7 MPa). It was verified that the ash of the sugar-cane biomass presents pozzolanic reaction and has great efficiency in decrease the permeability of the paste by filler effect, as well as that addition of ash in a relative amount of 10, 20 e 30% increases cured compressive resistance at low temperatures. It was also showed that the ash in a relative amount of 40% and 59% has very significant efficiency as anti-retrogression additive, since it prevents the decrease of compressive resistance and forms hydrated calcium silicate type xenotlita and tobermorita which have more resistance and stability in high temperatures
Resumo:
Despite the large quantity of sugarcane grown in Australia, no bagasse is pulped in the country. This is largely because of an established pulp industry based on the abundant native hardwood resources. However, increasing demand for fibre and the limited availability of additional forest areas make bagasse pulping attractive. Issues relating to infrastructure and economics are discussed, and scenarios of acceptable risk identified. It is shown that there should be scope for the production of bleached bagasse pulp in Australia.
Resumo:
SRI has examined the organosolv (organic solvation) pulping of Australian bagasse using technology supplied by Ecopulp. In the process, bagasse is reacted with aqueous ethanol in a digester at elevated temperatures (between 150ºC and 200ºC). The products from the digester are separated using proprietary technology before further processing into a range of saleable products. Test trials were undertaken using two batch digesters; the first capable of pulping about 25 g of wet depithed bagasse and the second, larger samples of about 1.5 kg of wet depithed bagasse. From this study, the unbleached pulp produced from fresh bagasse did not have very good strength properties for the production of corrugated medium for cartons and bleached pulp. In particular, the lignin contents as indicated by the Kappa number for the unbleached pulps are high for making bleached pulp. However, in spite of the high lignin content, it is possible to bleach the pulp to acceptable levels of brightness up to 86.6% ISO. The economics were assessed for three tier pricing (namely low, medium and high price). The economic return for a plant that produces 100 air dry t/d of brownstock pulp is satisfactory for both high and medium pricing levels of pricing. The outcomes from the project justify that work should continue through to either pilot plant or upgraded laboratory facility.
Resumo:
The soda process was the first chemical pulping method and was patented in 1845. Soda pulping led to kraft pulping, which involves the combined use of sodium hydroxide and sodium sulfide. Today, kraft pulping dominates the chemical pulping industry. However, about 10% of the total chemical pulp produced in the world is made using non-wood material, such as bagasse and wheat straw. The soda process is the preferred method of chemical pulping of non-wood materials, because it is considered to be economically viable on a small scale and for bagasse is compatible with sugarcane processing. With recent developments, the soda process can be designed to produce minimal effluent discharge and the fouling of evaporators by silica precipitation. The aim of this work is to produce bagasse fibres suitable for papermaking and allied applications and to produce sulfur-free lignin for use in specialty applications. A preliminary economic analysis of the soda process for producing commodity silica, lignin and pulp for papermaking is presented.
Resumo:
The ISSCT Process Section workshop held in Réunion 20–23 October 2008 was attended by 51 delegates from 10 countries. The theme was Green cane impact on sugar processing. The workshop provided a valuable and timely opportunity to review and discuss the impact on factory operations and performance from a green cane supply that could include significant levels of trash. It was particularly relevant to those mills that were considering options to boost their biomass intake for increased co-generation capacity. Several of the speakers related their experiences with processing ‘whole of crop’ cane supplies through the factory. Speakers detailed the problems and increased losses that were incurred when processing cane with high trash levels. The consensus of the delegates was that the best scenario would involve a cane-cleaning plant at the factory so that only clean cane would be processed through the factory. The forum recommended that more research was required to address the issues of increased impurities in the process streams associated with high trash levels. Site visits to the two factories and a cane-delivery station were arranged as part of the workshop.
Resumo:
A better understanding of the behaviour of prepared cane and bagasse during the crushing process is believed to be an essential prerequisite for further improvements to the crushing process. Improvements could be made, for example, in throughput, sugar extraction, and bagasse moisture. The ability to model the mechanical behaviour of bagasse as it is squeezed in a milling unit to extract juice would help identify how to improve the current process to reduce final bagasse moisture. However an adequate mechanical model for bagasse is currently not available. Previous investigations have proven with certainty that juice flow through bagasse obeys Darcy’s permeability law, that the grip of the rough surface of the grooves on the bagasse can be represented by the Mohr- Coulomb failure criterion for soils, and that the internal mechanical behaviour of the bagasse is critical state behaviour similar to that for sand and clay. Current Finite Element Models (FEM) available in commercial software have adequate permeability models. However, the same commercial software do not contain an adequate mechanical model for bagasse. Progress has been made in the last ten years towards implementing a mechanical model for bagasse in finite element software code. This paper builds on that progress and carries out a further step towards obtaining an adequate material model.
Resumo:
The ready availability of sugarcane bagasse at an existing industrial facility and the potential availability of extra fibre through trash collection make sugarcane fibre the best candidate for early stage commercialisation of cellulosic ethanol technologies. The commercialisation of cellulosic ethanol technologies in the sugar industry requires both development of novel technologies and the assessment of these technologies at a pre-commercial scale. In 2007, the Queensland University of Technology (QUT) received funding from the Australian and Queensland Governments to construct a pilot research and development facility for the production of bioethanol and other renewable biocommodities from biomass including sugarcane bagasse. This facility has been built on the site of the Racecourse Sugar Mill in Mackay, Queensland and is known as the Mackay Renewable Biocommodities Pilot Plant (MRBPP). This research facility is capable of processing cellulosic biomass by a variety of pretreatment technologies and includes equipment for enzymatic saccharification, fermentation and distillation to produce ethanol. Lignin and fermentation co-products can also be produced in the pilot facility.
Resumo:
For the 2005 season, Mackay Sugar and its growers agreed to implement a new cane payment system. The aim of the new system was to better align the business drivers between the mill and its growers and as a result improve business decision making. The technical basis of the new cane payment system included a fixed sharing of the revenue from sugar cane between the mill and growers. Further, the new system replaced the CCS formula with a new estimate of recoverable sugar (PRS) and introduced NIR for payment analyses. Significant mill and grower consultation processes led to the agreement to implement the new system in 2005 and this consultative approach has been reflected in two seasons of successful operation.
Resumo:
There has been substantial interest within the Australian sugar industry in product diversification as a means to reduce its exposure to fluctuating raw sugar prices and in order to increase its commercial viability. In particular, the industry is looking at fibrous residues from sugarcane harvesting (trash) and from sugarcane milling (bagasse) for cogeneration and the production of biocommodities, as these are complementary to the core process of sugar production. A means of producing surplus residue (biomass) is to process whole sugarcane crop. In this paper, the composition of different juices derived from different harvesting methods, viz. burnt cane with all trash extracted (BE), green cane with half of the trash extracted (GE), and green cane (whole sugarcane crop) with trash unextracted (GU), were investigated and the results and comparison presented. The determination of electrical conductivity, inorganic composition, and organic acids indicate that both GU and GE cane juice contain a higher proportion of soluble inorganic ions and ionisable organic acids, compared to BE cane juice. It is important to note that there are considerably higher levels of Na ions and citric acid, but relatively low P levels in the GU samples. A higher level of reducing sugars was analysed in the GU samples than the BE samples due to the higher proportion of impurities found naturally in sugarcane tops and leaves. The purity of the first expressed juice (FEJ) of GU cane was on average higher than that of FEJ of BE cane. Results also show that GU juices appear to contain higher levels of proteins and polysaccharides, with no significant difference in starch levels.
Resumo:
This paper describes the development and testing of a novel mill design to reduce the moisture content of bagasse. It takes advantage of gravity to separate juice from bagasse by pushing bagasse upwards while juice drains downwards under gravity. The potential of the design to reduce bagasse moisture content has not been adequately established. The prototype mill had limited power available that prevented typical delivery nip compactions from being achieved. Tests conducted did show a reduction in bagasse moisture but that moisture reduction is less than expected under ideal conditions. Work on the mill design has ceased, at least for the foreseeable future. The design does have potential to reduce bagasse moisture content but presents some engineering challenges to establish a reliable, low maintenance design alternative.
Resumo:
Bagasse stockpile operations have the potential to lead to adverse environmental and social impacts. Dust releases can cause occupational health and safety concerns for factory workers and dust emissions impact on the surrounding community. Preliminary modelling showed that bagasse depithing would likely reduce the environmental risks, particularly dust emissions, associated with large scale bagasse stockpiling operations. Dust emission properties were measured and used for dispersion modelling with favourable outcomes. Modelling showed a 70% reduction in peak ground level concentrations of PM10 dust (particles with an aerodynamic diameter less than 10 µm) from operations on depithed bagasse stockpiles compared to similar operations on stockpiles of whole bagasse. However, the costs of a depithing operation at a sugar factory were estimated to be approximately $2.1 million in capital expenditure to process 100,000 t/y of bagasse and operating costs were approximately $200,000 p.a. The total capital cost for a 10,000 t/y operation was approximately $1.6 million. The cost of depithing based on a discounted cash flow analysis was $5.50 per tonne of bagasse for the 100,000 t/y scenario. This may make depithing prohibitively expensive in many situations if installed exclusively as a dust control measure.
Resumo:
THIS PAPER DESCRIBES an experimental investigation to explore a concept designed to reduce the moisture content of bagasse. It takes advantage of gravity to separate juice from bagasse by feeding bagasse upwards into the nip of the mill while juice drains downwards under gravity. The investigation found that orienting the feed to a mill upwards does reduce bagasse moisture content and that the benefit is expected to be greater than two units of moisture. While an advantage was found in orienting the feed up to 50° above the horizontal, no extra benefit was found in increasing the angle higher (up to 60° was explored) and so a 50° orientation was identified as the preferred angle for this design concept.
Resumo:
The sugar industry is pursuing diversification options using bagasse as a feedstock. Depithing, the removal of the smaller bagasse particles, is an integral part of the manufacturing processes for bagasse by-products such as pulp and paper. There are possible environmental and economic benefits associated with incorporating depithing operations into a sugar factory. However there have only been limited investigations into the effects of depithing operations on a sugar factory boiler station. This paper describes a modelling investigation, using the lumped parameter boiler design tool BOILER and the CFD code FURNACE, to predict the effects of pith, depithed bagasse and mixed bagasse/pith firing on the efficiency, fuel consumption and combustion performance of a typical sugar factory boiler.
Resumo:
Pressure feeder chutes are pieces of equipment used in sugar cane crushing to increase the amount of cane that can be put through a mill. The continuous pressure feeder was developed with the objective to provide a constant feed of bagasse under pressure to the mouth of the crushing mills. The pressure feeder chute is used in a sugarcane milling unit to transfer bagasse from one set of crushing rolls to a second set of crushing rolls. There have been many pressure feeder chute failures in the past. The pressure feeder chute is quite vulnerable and if the bagasse throughput is blocked at the mill rollers, the pressure build-up in the chute can be enormous, which can ultimately result in failure. The result is substantial damage to the rollers, mill and chute construction, and downtimes of up to 48 hours can be experienced. Part of the problem is that the bagasse behaviour in the pressure feeder chute is not understood well. If the pressure feeder chute behaviour was understood, then the chute geometry design could be modified in order to minimise risk of failure. There are possible avenues for changing pressure feeder chute design and operations with a view to producing more reliable pressure feeder chutes in the future. There have been previous attempts to conduct experimental work to determine the causes of pressure feeder chute failures. There are certain guidelines available, however pressure feeder chute failures continue. Pressure feeder chute behaviour still remains poorly understood. This thesis contains the work carried out between April 14th 2009 and October 10th 2012 that focuses on the design of an experimental apparatus to measure forces and visually observe bagasse behaviour in an attempt to understand bagasse behaviour in pressure feeder chutes and minimise the risk of failure.