934 resultados para string breaking
Resumo:
In this Letter a topological interpretation for the string thermal vacuum in the thermo field dynamics (TFD) approach is given. As a consequence, the relationship between the imaginary time and TFD formalisms is achieved when both are used to study closed strings at finite temperature. The TFD approach starts by duplicating the system's degrees of freedom, defining an auxiliary (tilde) string. In order to lead the system to finite temperature a Bogoliubov transformation is implemented. We show that the effect of this transformation is to glue together the string and the tilde string to obtain a torus. The thermal vacuum appears as the boundary state for this identification. Also, from the thermal state condition, a Kubo-Martin-Schwinger condition for the torus topology is derived. © 2005 Elsevier B.V. All rights reserved.
Resumo:
We show that in SU(3)(C) circle times SU(3)(L) circle times U(1)(N) (3-3-1) models embedded with a singlet scalar playing the role of the axion, after imposing scale invariance, the breaking of Peccei-Quinn symmetry occurs through the one-loop effective potential for the singlet field. We, then, analyze the structure of spontaneous symmetry breaking by studying the new scalar potential for the model, and verify that electroweak symmetry breaking is tightly connected to the 3-3-1 breaking by the strong constraints among their vacuum expectation values. This offers a valuable guide to write down the correct pattern of symmetry breaking for multi-scalar theories. We also obtained that the accompanying massive pseudo-scalar, instead of acquiring mass of order of Peccei-Quinn scale as we would expect, develops a mass at a much lower scale, a consequence solely of the breaking via Coleman-Weinberg mechanism. (c) 2005 Published by Elsevier B.V.
Resumo:
The sl(2) affine Toda model coupled to matter is shown to describe various features, such as the spectrum and string tension, of the low-energy effective Lagrangian of two-dimensional QCD (one flavor and N colors). The corresponding string tension is computed when the dynamical quarks are in the fundamental representation of SU(N) and in the adjoint representation of SU(2).
Resumo:
Following suggestions of Nekrasov and Siegel, a non-minimal set of fields are added to the pure spinor formalism for the superstring. Twisted (c) over cap = 3 N = 2 generators are then constructed where the pure spinor BRST operator is the fermionic spin-one generator, and the formalism is interpreted as a critical topological string. Three applications of this topological string theory include the super-Poincare covariant computation of multiloop superstring amplitudes without picture-changing operators, the construction of a cubic open superstring field theory without contact-term problems, and a new four-dimensional version of the pure spinor formalism which computes F-terms in the spacetime action.
Resumo:
We investigate an alternative compactification of extra dimensions using local cosmic string in the Brans-Dicke gravity framework. In the context of dynamical systems it is possible to show that there exist a stable field configuration for the Einstein-Brans-Dicke equations. We explore the analogies between this particular model and the Randall-Sundrum scenario.
Resumo:
Chiral symmetry breaking at finite baryon density is usually discussed in the context of quark matter, i.e. a system of deconfined quarks. Many systems like stable nuclei and neutron stars however have quarks confined within nucleons. In this paper we construct a Fermi sea of three-quark nucleon clusters and investigate the change of the quark condensate as a function of baryon density. We study the effect of quark clustering on the in-medium quark condensate and compare results with the traditional approach of modeling hadronic matter in terms of a Fermi sea of deconfined quarks.
Resumo:
In this work we implement the spontaneous breaking of lepton number in version II of the 3-3-1 models and study their phenomenological consequences. The main result of this work is that our majoron is invisible even though it belongs to a triplet representation by the 3-3-1 symmetry.
Resumo:
In this Letter, an alternative string theory in twistor space is proposed for describing perturbative N=4 super-Yang-Mills theory. Like the recent proposal of Witten, this string theory uses twistor worldsheet variables and has manifest spacetime superconformal invariance. However, in this proposal, tree-level super-Yang-Mills amplitudes come from open string tree amplitudes as opposed to coming from D-instanton contributions.
Resumo:
We propose a modification of standard linear electrodynamics in four dimensions, where effective non-trivial interactions of the electromagnetic field with itself and with matter fields induce Lorentz violating Chern-Simons terms. This yields two consequences: it provides a more realistic and general scenario for the breakdown of Lorentz symmetry in electromagnetism and it may explain the effective behavior of the electromagnetic field in certain planar phenomena (for instance, Hall effect). A number of proposals for non-linear electrodynamics is discussed along the paper. Important physical implications of the breaking of Lorentz symmetry, such as optical birefringence and the possibility of having conductance in the vacuum are commented on.
Resumo:
Different string theories in twistor space have recently been proposed for describing N = 4 super-Yang-Mills. In this paper, a string theory in (x, theta) space is constructed for self-dual N = 4 super-Yang-Mills. It is hoped that these results will be useful for understanding the twistor-string proposals and their possible relation with the pure spinor formalism of the d = 10 superstring.
Resumo:
We report the results of a search for supersymmetry (SUSY) with gauge-mediated breaking in the missing transverse energy distribution of inclusive diphoton events using 263 pb(-1) of data collected by the D0 experiment at the Fermilab Tevatron Collider in 2002-2004. No excess is observed above the background expected from standard model processes, and lower limits on the masses of the lightest neutralino and chargino of about 108 and 195 GeV, respectively, are set at the 95% confidence level. These are the most stringent limits to date for models with gauge-mediated SUSY breaking with a short-lived neutralino as the next-to-lightest SUSY particle.
Resumo:
In this paper, a real-time formulation of light-cone pp-wave string field theory at finite temperature is presented. This is achieved by developing the thermo field dynamics (TFD) formalism in a second quantized string scenario. The equilibrium thermodynamic quantities for a pp-wave ideal string gas are derived directly from expectation values on the second quantized string thermal vacuum. Also, we derive the real-time thermal pp-wave closed string propagator. In the flat space limit it is shown that this propagator can be written in terms of Theta functions, exactly as the zero temperature one. At the end, we show how superstrings interactions can be introduced, making this approach suitable to study the BMN dictionary at finite temperature.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)