980 resultados para stochastic approximation algorithm


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present the composite Euler method for the strong solution of stochastic differential equations driven by d-dimensional Wiener processes. This method is a combination of the semi-implicit Euler method and the implicit Euler method. At each step either the semi-implicit Euler method or the implicit Euler method is used in order to obtain better stability properties. We give criteria for selecting the semi-implicit Euler method or the implicit Euler method. For the linear test equation, the convergence properties of the composite Euler method depend on the criteria for selecting the methods. Numerical results suggest that the convergence properties of the composite Euler method applied to nonlinear SDEs is the same as those applied to linear equations. The stability properties of the composite Euler method are shown to be far superior to those of the Euler methods, and numerical results show that the composite Euler method is a very promising method. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we discuss implicit Taylor methods for stiff Ito stochastic differential equations. Based on the relationship between Ito stochastic integrals and backward stochastic integrals, we introduce three implicit Taylor methods: the implicit Euler-Taylor method with strong order 0.5, the implicit Milstein-Taylor method with strong order 1.0 and the implicit Taylor method with strong order 1.5. The mean-square stability properties of the implicit Euler-Taylor and Milstein-Taylor methods are much better than those of the corresponding semi-implicit Euler and Milstein methods and these two implicit methods can be used to solve stochastic differential equations which are stiff in both the deterministic and the stochastic components. Numerical results are reported to show the convergence properties and the stability properties of these three implicit Taylor methods. The stability analysis and numerical results show that the implicit Euler-Taylor and Milstein-Taylor methods are very promising methods for stiff stochastic differential equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consider a tandem system of machines separated by infinitely large buffers. The machines process a continuous flow of products, possibly at different speeds. The life and repair times of the machines are assumed to be exponential. We claim that the overflow probability of each buffer has an exponential decay, and provide an algorithm to determine the exact decay rates in terms of the speeds and the failure and repair rates of the machines. These decay rates provide useful qualitative insight into the behavior of the flow line. In the derivation of the algorithm we use the theory of Large Deviations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we discuss implicit methods based on stiffly accurate Runge-Kutta methods and splitting techniques for solving Stratonovich stochastic differential equations (SDEs). Two splitting techniques: the balanced splitting technique and the deterministic splitting technique, are used in this paper. We construct a two-stage implicit Runge-Kutta method with strong order 1.0 which is corrected twice and no update is needed. The stability properties and numerical results show that this approach is suitable for solving stiff SDEs. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantum dynamics simulations can be improved using novel quasiprobability distributions based on non-orthogonal Hermitian kernel operators. This introduces arbitrary functions (gauges) into the stochastic equations. which can be used to tailor them for improved calculations. A possible application to full quantum dynamic simulations of BEC's is presented. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the theory of quantum fluctuations in non-equilibrium systems having large critical fluctuations. This allows us to treat the limits imposed by nonlinearities to quantum squeezing and noise reduction, and also to envisage future tests of quantum theory in regions of macroscopic quantum fluctuations. A long-term objective of this research is to identify suitable physical systems in which macroscopic 'Schrodinger cat'-like behaviour may be observed. We investigate two systems in particular of much current experimental interest, namely the degenerate parametric oscillator near threshold, and the evaporatively cooled (BEC). We compare the results obtained in the positive-P representation, as a fully quantum mechanical calculation, with the truncated Wigner phase space equation, also known as semi-classical theory. We show when these results agree and differ in calculations taken beyond the linearized approximation. In the region where the largest quantum fluctuations and Schrodinger cat-like behaviour might be expected, we find that the quantum predictions correspond very closely to the semi-classical theory. Nature abhors observing a Schrodinger car.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phase estimation algorithm is so named because it allows an estimation of the eigenvalues associated with an operator. However, it has been proposed that the algorithm can also be used to generate eigenstates. Here we extend this proposal for small quantum systems, identifying the conditions under which the phase-estimation algorithm can successfully generate eigenstates. We then propose an implementation scheme based on an ion trap quantum computer. This scheme allows us to illustrate two simple examples, one in which the algorithm effectively generates eigenstates, and one in which it does not.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We apply the quantum trajectory method to current noise in resonant tunneling devices. The results from dynamical simulation are compared with those from unconditional master equation approach. We show that the stochastic Schrodinger equation approach is useful in modeling the dynamical processes in mesoscopic electronic systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that stochastic electrodynamics and quantum mechanics give quantitatively different predictions for the quantum nondemolition (QND) correlations in travelling wave second harmonic generation. Using phase space methods and stochastic integration, we calculate correlations in both the positive-P and truncated Wigner representations, the latter being equivalent to the semi-classical theory of stochastic electrodynamics. We show that the semiclassical results are different in the regions where the system performs best in relation to the QND criteria, and that they significantly overestimate the performance in these regions. (C) 2001 Published by Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new algorithm, PfAGSS, for predicting 3' splice sites in Plasmodium falciparum genomic sequences is described. Application of this program to the published P. falciparum chromosome 2 and 3 data suggests that existing programs result in a high error rate in assigning 3' intron boundaries. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce a model for the dynamics of a patchy population in a stochastic environment and derive a criterion for its persistence. This criterion is based on the geometric mean (GM) through time of the spatial-arithmetic mean of growth rates. For the population to persist, the GM has to be greater than or equal to1. The GM increases with the number of patches (because the sampling error is reduced) and decreases with both the variance and the spatial covariance of growth rates. We derive analytical expressions for the minimum number of patches (and the maximum harvesting rate) required for the persistence of the population. As the magnitude of environmental fluctuations increases, the number of patches required for persistence increases, and the fraction of individuals that can be harvested decreases. The novelty of our approach is that we focus on Malthusian local population dynamics with high dispersal and strong environmental variability from year to year. Unlike previous models of patchy populations that assume an infinite number of patches, we focus specifically on the effect that the number of patches has on population persistence. Our work is therefore directly relevant to patchily distributed organisms that are restricted to a small number of habitat patches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The numerical implementation of the complex image approach for the Green's function of a mixed-potential integralequation formulation is examined and is found to be limited to low values of k(0) rho (in this context k(0) rho = 2 pirho/ lambda(0), where rho is the distance between the source and the field points of the Green's function and lambda(0) is the free space wavelength). This is a clear limitation for problems of large dimension or high frequency where this limit is easily exceeded. This paper examines the various strategies and proposes a hybrid method whereby most of the above problems can be avoided. An efficient integral method that is valid for large k(0) rho is combined with the complex image method in order to take advantage of the relative merits of both schemes. It is found that a wide overlapping region exists between the two techniques allowing a very efficient and consistent approach for accurately calculating the Green's functions. In this paper, the method developed for the computation of the Green's function is used for planar structures containing both lossless and lossy media.