950 resultados para spoilage microorganisms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microbial spoilage of meat and seafood products with short shelf lives is responsible for a significant amount of food waste. Food spoilage is a very heterogeneous process, involving the growth of various, poorly characterized bacterial communities. In this study, we conducted 16S ribosomal RNA gene pyrosequencing on 160 samples of fresh and spoiled foods to comparatively explore the bacterial communities associated with four meat products and four seafood products that are among the most consumed food items in Europe. We show that fresh products are contaminated in part by a microbiota similar to that found on the skin and in the gut of animals. However, this animal-derived microbiota was less prevalent and less abundant than a core microbiota, psychrotrophic in nature, mainly originated from the environment (water reservoirs). We clearly show that this core community found on meat and seafood products is the main reservoir of spoilage bacteria. We also show that storage conditions exert strong selective pressure on the initial microbiota: alpha diversity in fresh samples was 189 +/- 58 operational taxonomic units (OTUs) but dropped to 27 +/- 12 OTUs in spoiled samples. The OTU assemblage associated with spoilage was shaped by low storage temperatures, packaging and the nutritional value of the food matrix itself. These factors presumably act in tandem without any hierarchical pattern. Most notably, we were also able to identify putative new clades of dominant, previously undescribed bacteria occurring on spoiled seafood, a finding that emphasizes the importance of using culture-independent methods when studying food microbiota.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficacy of sakacin on selected food pathogenic microorganisms isolated from fermented milk products was investigated. The L. sake was isolated using the pour plate technique and was characterized based on it colony, cell morphology and some biochemical tests. This isolate was identified using standard scheme. The L. sake FCF 33 was propagated in De Man Rogosa Sharpe (MRS) broth for bacteriocin (sakacin) production. The sakacin had inhibitory effects on all test microorganisms (ranging from +5mm to +6mm) except Shigella dysenteriae N11, Salmonella typhimurium N8, Klebsiella ozaenae W24 and Proteus mirabilis N16a). Bacteriocins are antimicrobial substances of lactic acid bacteria (LAB) have gained tremendous attention as potential bio preservatives in the food and dairy industries. The LAB can serve as probiotics, which are products aimed at delivering living, potentially beneficial bacterial cells to the gut ecosystem of humans and other animals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Staphylococcus aureus is the causative agent of many infections and the advent MRSA has drawn much attention to it. However, some organisms have been noted to be wrongly identified as S. aureus through phenotypic identifications leading to wrong treatment of infections. This study is therefore undertaken to evaluate the rate of false identification of other organisms as S. aureus in Southern Nigeria. Methods: 507 microorganisms which have been previously identified as S. aureus in 8 States in Southern Nigeria through characteristic morphology on blood agar, Gram staining, growth and fermentation on Mannitol Salt Agar and coagulase formation were collected. All the isolates were identified in this study through sequencing of 16S rRNA and detection of spa gene. The percentages of true and false identities were determined. Results: Of the 507 isolates previously identified as S. aureus, only 54 (11 %) were confirmed as S. aureus while the rest were coagulase negative Staphylococci (85 % misidentification rate), Bacillus sp. (12 % misidentification rate), and Brevibacterium sp. (3 % misidentification rate). Conclusion: A high rate of false positive identification of S. aureus which could lead to the misuse of antibiotics in emergency situation has been identified in this study. The use of standard methods for the identification of S. aureus at all times is highly recommended.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biofilms are microbial communities characterized by their adhesion to solid surfaces and the production of a matrix of exopolymeric substances, consisting of polysaccharides, proteins, DNA and lipids, which surround the microorganisms lending structural integrity and a unique biochemical profile to the biofilm. Biofilm formation enhances the ability of the producer/s to persist in a given environment. Pathogenic and spoilage bacterial species capable of forming biofilms are a significant problem for the healthcare and food industries, as their biofilm-forming ability protects them from common cleaning processes and allows them to remain in the environment post-sanitation. In the food industry, persistent bacteria colonize the inside of mixing tanks, vats and tubing, compromising food safety and quality. Strategies to overcome bacterial persistence through inhibition of biofilm formation or removal of mature biofilms are therefore necessary. Current biofilm control strategies employed in the food industry (cleaning and disinfection, material selection and surface preconditioning, plasma treatment, ultrasonication, etc.), although effective to a certain point, fall short of biofilm control. Efforts have been explored, mainly with a view to their application in pharmaceutical and healthcare settings, which focus on targeting molecular determinants regulating biofilm formation. Their application to the food industry would greatly aid efforts to eradicate undesirable bacteria from food processing environments and, ultimately, from food products. These approaches, in contrast to bactericidal approaches, exert less selective pressure which in turn would reduce the likelihood of resistance development. A particularly interesting strategy targets quorum sensing systems, which regulate gene expression in response to fluctuations in cell-population density governing essential cellular processes including biofilm formation. This review article discusses the problems associated with bacterial biofilms in the food industry and summarizes the recent strategies explored to inhibit biofilm formation, with special focus on those targeting quorum sensing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The availability of fresh-cut fruit (FCF) in the marketplace has been increasing in Portugal, although reports of its microbial quality are not known. Due to the growing concerns of these commodities over their microbial safety, the objectives of this work were to study the microbiological quality and prevalence of Salmonella and Listeria monocytogenes on fresh-cut fruits sold in southern Portugal. A study to examine the changes in pH and microbial counts, before and after the expiration dates, was also made. A total of 160 samples was purchased in the local grocery stores between September 2011 and August 2014, before their sell-by date. These samples were assayed for aerobic mesophilic (AM) and psychrotrophic (AP) microorganisms, yeasts and molds (YM), lactic-acid bacteria (LAB), coliforms (TC), Escherichia coli and coagulase positive staphylococci as well as L. monocytogenes and Salmonella. The microbiological counts ranged from 3.0-9.2 lg cfu/g (AM); 2.2–10.7 lg cfu/g (AP); 2.3–10.4 lg cfu/g (YM); 1.9–9.0 lg cfu/g (LAB) and less than 1–9.1 lg cfu/g (TC). The melons and watermelon presented the highest levels of the microbial quality parameters studied. However, no E. coli, staphylococci, Salmonella and L. monocytogenes were detected in any of the samples. After the sell-by date, an increase of the AM, AP, LAB and YM values was observed in all fruits. Conversely, the differences found in TC counts before and after the best-before date had no statistical significance. A decrease in pH was observed in all fruits except pineapple whose pH slightly increased after 14 days of storage. The results highlight the importance of preventing contamination and cross contamination, selecting adequate decontamination technologies and maintaining a strict temperature control during processing, distribution and selling of FCF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A laboratory-based methodology was designed to assess the bioreceptivity of glazed tiles. The experimental set-up consisted of multiple steps: manufacturing of pristine and artificially aged glazed tiles, enrichment of phototrophic microorganisms, inoculation of phototrophs on glazed tiles, incubation under optimal conditions and quantification of biomass. In addition, tile intrinsic properties were assessed to determine which material properties contributed to tile bioreceptivity. Biofilm growth and biomass were appraised by digital image analysis, colorimetry and chlorophyll a analysis. SEM, micro-Raman and micro-particle induced X-ray emission analyses were carried out to investigate the biodeteriorating potential of phototrophic microorganisms on the glazed tiles. This practical and multidisciplinary approach showed that the accelerated colonization conditions allowed different types of tile bioreceptivity to be distinguished and to be related to precise characteristics of the material. Aged tiles showed higher bioreceptivity than pristine tiles due to their higher capillarity and permeability. Moreover, biophysical deterioration caused by chasmoendolithic growth was observed on colonized tile surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

European cave art is of tremendous importance to understand the cultural traditions of the Upper Palaeolithic (35 000 – 10 000 BP) populations. Indeed, Prehistoric communities performed numerous cave paintings all over Western Europe. Understanding these artworks should provide a better knowledge of these early cultural aspects. Although numerous studies have been carried out to analyse the materials used by those communities, nothing has been done on the techniques’ palette of Escoural Cave’s representations. The present work aims at providing the very first data about the techniques and materials used by the Prehistoric to perform the cave paintings of Escoural (Alentejo, Portugal), and the microorganisms possibly endangering this unique parietal art. In situ observations coupled with an extensive micro-sampling and micro-destructive analyses allowed to characterize the coloured material and the way they were applied on the walls of the cave. Both red and black pigments present major composition’s disparities among the different paintings and drawings, supporting a more complex occupations’ chronology than what was earlier thought. The Palaeolithic paintings have suffered deterioration from environmental conditions and include chemical, mechanical and aesthetic alterations, possibly as a result of fungal activity. The standard techniques for biological assessments used in these contexts provided important insights on the diversity of the microbial population, though they have accuracy limitations. To understand the extent and viability of the existing microbiota, DNA quantification and biomarkers analyses, such as desidrogenase activity were performed and correlated with ergosterol amounts; RESUMO: A Arte Rupestre Europeia é de grande importância para compreender as tradições culturais da população do Paleolítico Superior (35 000 - 10 000 BP). De fato, as comunidades Pré-históricas realizaram inúmeras pinturas rupestres em toda a Europa Ocidental, sendo crucial compreender estas obras de forma a proporcionar um melhor conhecimento destes ancestrais aspectos culturais. Embora vários estudos tenham sido realizados para analisar os materiais utilizados por estas comunidades, nada foi efetuado sobre a técnica de execução das representações presentes na Gruta do Escoural. O presente trabalho visa fornecer os primeiros dados sobre as técnicas e materiais utilizados na Pré-História para executar as pinturas rupestres de Escoural (Alentejo, Portugal) bem como caracterização dos microorganismos possivelmente associados aos danos deste bem único. Observações in situ, juntamente com uma extensa micro-amostragem e análises micro-destrutivas permitiu caracterizar os pigmentos utilizados e a forma como eles foram aplicados nas paredes da caverna. Tanto os pigmentos vermelhos como os pretos apresentam composição distinta nas diversas pinturas e desenhos aí representados, apoiando a presença de diferentes ocupações contrariamente ao que se pensava até então. As pinturas Paleolíticas têm sofrido deterioração, devido às condições ambientais, nomeadamente alterações químicas, mecânicas e, possivelmente como resultado da atividade fúngica. As técnicas usualmente utilizadas para a avaliação de contaminação biológica fornecem informação importante sobre a diversidade da população microbiana, embora apresentem algumas limitações. Para entender a extensão e a viabilidade da microbiota existente, a quantificação de DNA e análise de biomarcadores como actividade de desidrogenases foram realizadas e correlacionadas com o conteúdo em ergosterol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As pragas da parte aérea da cultura de milho na regiao de Guaira-SP sao atacadas pelos inimigos naturais Doru luteipes Cycloneda sanguinea, Chrysoperla externa, Callida sp., Zelus sp., Geocoris sp., varias especies de aranhas e parasitoides. Este trabalho teve como objetivo avaliar o efeito do EM (efficient microorganisms) sobre a fauna benéfica dessa cultura. Foram avaliados 5 campos sendo 3 deles conduzidos pelo sistema de plantio convencional e 2 deles sob sistema de plantio direto. Cada campo foi divido em 4 faixas (parcelas), sendo 2 delas tratadas com EM e duas sem aplicação do produto, que serviram de testemunhas. No campo 1 foram feitas 3 avaliações, nos estágios de 4-6 folhas, 8-10 folhas de espigamento, tendo sido constatado no tratamento PCEM (plantio convencional com EM), 7,56%, 43,99% e 32,83% de inimigos naturais; no tratamento PC (testemunha) foram encontrados 14,22%, 52,07% e 28,19%, respectivamente. No campo 2 foram feitas 2 avaliações nos estágios de 12-14 folhas e no de espigamento, tendo sido obtidos no tratamento PCEM, 21,90% e 31,79%; em PC, 19,53% e 25,53%. No campo 3 foram feitas 2 avaliações, ambas no estagio de espigamento, tendo sido encontrados em PCEM 18,81% e 13,78; em PC, 26,28% e 16,71%. No campo 4 , sob plantio direto, foram feitas 3 avaliações nos estágios de 6-8 folhas, e 2 avaliações no estagio espigamento, tendo sido obtidos em PDEM 13,71%,31,44% e 18,00%; em PD, 11,41%, 28,15% e 18,74%. No campo 5 teve 2 avaliações, nos estágios de 8-10 folhas e no de espigamento, obtendo-se em PDEM 17,22% e 30,96%; em PD, 20,24% e 30,38. A medida que a cultura envelhece, em ambos os sistemas de condução da cultura as parcelas tratadas com EM tendem a apresentar maior proporção de inimigos naturais.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Os inimigos naturais de pragas da cultura de feijão constituídas por aranhas, Chrysoperla externa, Cycloneda sanguínea, Zelus sp., Geocoris sp. e Nabis sp. são importantes controladores de pragas dessa cultura. Este trabalho teve como objetivo testar o efeito de EM (efficient microorganisms) sobre a fauna de organismos benéficos. Foram avaliados 5 campos, sendo três deles conduzidos pelo sistema de plantio convencional (campos 1,2 e 3) e dois deles pelo sistema de plantio direto (campos 4 e 5). No campo 1 foram feitas 3 avaliações com a cultura nos estágios V4, R6 e R7, tendo sido encontrados nas parcelas tratadas com EM (PCEM), 19,735, 17,89%, 7,87% de inimigos naturais, enquanto nas parcelas testemunhas sem aplicação de EM (PC), 25,70%, 15,94% e 13,54%. No campo 2 foram feitas 2 avaliações nos estágios R6 e R7, tendo sido encontrados nas parcelas PCEM 20,20% e 15,84%; nas parcelas PC esses percentuais foram de 18,83, e 13,66. No campo 3 foram feitas 2 avaliações nos estagios R7 e R9, obtendo-se em PCEM, 18,16% e 20,37%, enquanto em PC, 22,59% e 14,90% de inimigos naturais. No campo 4 foi feita uma única avaliação no estagio R7 e os resultados foram de 21,47% (PDEM) e 22,89% (PD). No campo 5 foram feitas duas avaliações nos estágios R6 e R7, obtendo-se em PDEM 22,05% e 18,89%; no tratamento PD, 28,80 e 24,54%. Estes resultados se referem ao primeiro ano de aplicacao de EM, devendo ser repetidas nos anos seguintes, nos quais se espera maior percentual de inimigos naturais nas parcelas tratadas com EM que na parcelas testemunhas, o que já esta ocorrendo nos campos 2 e 3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study aimed to evaluate the suitability of Escherichia coli, enterococci and C. perfringens to assess the microbiological quality of roof harvested rainwater, and to assess whether the concentrations of these faecal indicators can be used to predict the presence or absence of specific zoonotic bacterial or protozoan pathogens. From a total of 100 samples tested, respectively 58%, 83% and 46% of samples were found to be positive for E. coli, enterococci and C. perfringens spores, as determined by traditional culture based methods. Additionally, in the samples tested, 7%, 19%, 1%, 8%, 17%, and 15% were PCR positive for A. hydrophila lip, C. coli ceuE, C. jejuni mapA, L. pneumophila mip, Salmonella invA, and G. lamblia β-giardin genes. However, none of the samples was positive for E. coli O157 LPS, VT1, VT2 and C. parvum COWP genes. The presence or absence of these potential pathogens did not correlate with any of the faecal indicator bacterial concentrations as determined by a binary logistic regression model. The roof-harvested rainwater samples tested in this study appear to be of poor microbiological quality and no significant correlation was found between the concentration of faecal indicators and pathogenic microorganisms. The use of faecal indicator bacteria raises questions regarding their reliability in assessing the microbiological quality of water and particularly their poor correlation with pathogenic microorganisms. The presence of one or more zoonotic pathogens suggests that the microbiological analysis of water should be performed, and appropriate treatment measures should be undertaken especially in tanks where the water is used for drinking.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diarrhoea is one of the leading causes of morbidity and mortality in populations in developing countries and is a significant health issue throughout the world. Despite the frequency and the severity of the diarrhoeal disease, mechanisms of pathogenesis for many of the causative agents have been poorly characterised. Although implicated in a number of intestinal and extra-intestinal infections in humans, Plesiomonas shigelloides generally has been dismissed as an enteropathogen due to the lack of clearly demonstrated virulence-associated properties such as production of cytotoxins and enterotoxins or invasive abilities. However, evidence from a number of sources has indicated that this species may be the cause of a number of clinical infections. The work described in this thesis seeks to resolve this discrepancy by investigating the pathogenic potential of P. shigelloides using in vitro cell models. The focus of this research centres on how this organism interacts with human host cells in an experimental model. Very little is known about the pathogenic potential of P. shigel/oides and its mechanisms in human infections and disease. However, disease manifestations mimic those of other related microorganisms. Chapter 2 reviews microbial pathogenesis in general, with an emphasis on understanding the mechanisms resulting from infection with bacterial pathogens and the alterations in host cell biology. In addition, this review analyses the pathogenic status of a poorly-defined enteropathogen, P. shigelloides. Key stages of pathogenicity must occur in order for a bacterial pathogen to cause disease. Such stages include bacterial adherence to host tissue, bacterial entry into host tissues (usually required), multiplication within host tissues, evasion of host defence mechanisms and the causation of damage. In this study, these key strategies in infection and disease were sought to help assess the pathogenic potential of P. shigelloides (Chapter 3). Twelve isolates of P. shigelloides, obtained from clinical cases of gastroenteritis, were used to infect monolayers of human intestinal epithelial cells in vitro. Ultrastructural analysis demonstrated that P. shigelloides was able to adhere to the microvilli at the apical surface of the epithelial cells and also to the plasma membranes of both apical and basal surfaces. Furthermore, it was demonstrated that these isolates were able to enter intestinal epithelial cells. Internalised bacteria often were confined within vacuoles surrounded by single or multiple membranes. Observation of bacteria within membranebound vacuoles suggests that uptake of P. shigelloides into intestinal epithelial cells occurs via a process morphologically comparable to phagocytosis. Bacterial cells also were observed free in the host cell cytoplasm, indicating that P. shige/loides is able to escape from the surrounding vacuolar membrane and exist within the cytosol of the host. Plesiomonas shigelloides has not only been implicated in gastrointestinal infections, but also in a range of non-intestinal infections such as cholecystitis, proctitis, septicaemia and meningitis. The mechanisms by which P. shigelloides causes these infections are not understood. Previous research was unable to ascertain the pathogenic potential of P. shigel/oides using cells of non-intestinal origin (HEp-2 cells derived from a human larynx carcinoma and Hela cells derived from a cervical carcinoma). However, with the recent findings (from this study) that P. shigelloides can adhere to and enter intestinal cells, it was hypothesised, that P. shigel/oides would be able to enter Hela and HEp-2 cells. Six clinical isolates of P. shigelloides, which previously have been shown to be invasive to intestinally derived Caco-2 cells (Chapter 3) were used to study interactions with Hela and HEp-2 cells (Chapter 4). These isolates were shown to adhere to and enter both nonintestinal host cell lines. Plesiomonas shigelloides were observed within vacuoles surrounded by single and multiple membranes, as well as free in the host cell cytosol, similar to infection by P. shigelloides of Caco-2 cells. Comparisons of the number of bacteria adhered to and present intracellularly within Hela, HEp-2 and Caco-2 cells revealed a preference of P. shigelloides for Caco-2 cells. This study conclusively showed for the first time that P. shigelloides is able to enter HEp-2 and Hela cells, demonstrating the potential ability to cause an infection and/or disease of extra-intestinal sites in humans. Further high resolution ultrastructural analysis of the mechanisms involved in P. shigelloides adherence to intestinal epithelial cells (Chapter 5) revealed numerous prominent surface features which appeared to be involved in the binding of P. shige/loides to host cells. These surface structures varied in morphology from small bumps across the bacterial cell surface to much longer filaments. Evidence that flagella might play a role in bacterial adherence also was found. The hypothesis that filamentous appendages are morphologically expressed when in contact with host cells also was tested. Observations of bacteria free in the host cell cytosol suggests that P. shigelloides is able to lyse free from the initial vacuolar compartment. The vacuoles containing P. shigel/oides within host cells have not been characterised and the point at which P. shigelloides escapes from the surrounding vacuolar compartment has not been determined. A cytochemical detection assay for acid phosphatase, an enzymatic marker for lysosomes, was used to analyse the co-localisation of bacteria-containing vacuoles and acid phosphatase activity (Chapter 6). Acid phosphatase activity was not detected in these bacteria-containing vacuoles. However, the surface of many intracellular and extracellular bacteria demonstrated high levels of acid phosphatase activity, leading to the proposal of a new virulence factor for P. shigelloides. For many pathogens, the efficiency with which they adhere to and enter host cells is dependant upon the bacterial phase of growth. Such dependency reflects the timing of expression of particular virulence factors important for bacterial pathogenesis. In previous studies (Chapter 3 to Chapter 6), an overnight culture of P. shigelloides was used to investigate a number of interactions, however, it was unknown whether this allowed expression of bacterial factors to permit efficient P. shigelloides attachment and entry into human cells. In this study (Chapter 7), a number of clinical and environmental P. shigelloides isolates were investigated to determine whether adherence and entry into host cells in vitro was more efficient during exponential-phase or stationary-phase bacterial growth. An increase in the number of adherent and intracellular bacteria was demonstrated when bacteria were inoculated into host cell cultures in exponential phase cultures. This was demonstrated clearly for 3 out of 4 isolates examined. In addition, an increase in the morphological expression of filamentous appendages, a suggested virulence factor for P. shigel/oides, was observed for bacteria in exponential growth phase. These observations suggest that virulence determinants for P. shigel/oides may be more efficiently expressed when bacteria are in exponential growth phase. This study demonstrated also, for the first time, that environmental water isolates of P. shigelloides were able to adhere to and enter human intestinal cells in vitro. These isolates were seen to enter Caco-2 host cells through a process comparable to the clinical isolates examined. These findings support the hypothesis of a water transmission route for P. shigelloides infections. The results presented in this thesis contribute significantly to our understanding of the pathogenic mechanisms involved in P. shigelloides infections and disease. Several of the factors involved in P. shigelloides pathogenesis have homologues in other pathogens of the human intestine, namely Vibrio, Aeromonas, Salmonella, Shigella species and diarrhoeaassociated strains of Escherichia coli. This study emphasises the relevance of research into Plesiomonas as a means of furthering our understanding of bacterial virulence in general. As well it provides tantalising clues on normal and pathogenic host cell mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Potential impacts of plantation forestry practices on soil organic carbon and Fe available to microorganisms were investigated in a subtropical coastal catchment. The impacts of harvesting or replanting were largely limited to the soil top layer (0–10 cm depth). The thirty-year-old Pinus plantation showed low soil moisture content (Wc) and relatively high levels of soil total organic carbon (TOC). Harvesting and replanting increased soil Wc but reduced TOC levels. Mean dissolved organic carbon (DOC) and microbial biomass carbon (MBC) increased in harvested or replanted soils, but such changes were not statistically significant (P > 0.05). Total dithionite-citrate and aqua regia-extractable Fe did not respond to forestry practices, but acid ammonium oxalate and pyrophosphate-extractable, bioavailable Fe decreased markedly after harvesting or replanting. Numbers of heterotrophic bacteria were significantly correlated with DOC levels (P < 0.05), whereas Fe-reducing bacteria and S-bacteria detected using laboratory cultivation techniques did not show strong correlation with either soil DOC or Fe content.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microorganisms play key roles in biogeochemical cycling by facilitating the release of nutrients from organic compounds. In doing so, microbial communities use different organic substrates that yield different amounts of energy for maintenance and growth of the community. Carbon utilization efficiency (CUE) is a measure of the efficiency with which substrate carbon is metabolized versus mineralized by the microbial biomass. In the face of global change, we wanted to know how temperature affected the efficiency by which the soil microbial community utilized an added labile substrate, and to determine the effect of labile soil carbon depletion (through increasing duration of incubation) on the community's ability to respond to an added substrate. Cellobiose was added to soil samples as a model compound at several times over the course of a long-term incubation experiment to measure the amount of carbon assimilated or lost as CO2 respiration. Results indicated that in all cases, the time required for the microbial community to take up the added substrate increased as incubation time prior to substrate addition increased. However, the CUE was not affected by incubation time. Increased temperature generally decreased CUE, thus the microbial community was more efficient at 15 degrees C than at 25 degrees C. These results indicate that at warmer temperatures microbial communities may release more CO2 per unit of assimilated carbon. Current climate-carbon models have a fixed CUE to predict how much CO2 will be released as soil organic matter is decomposed. Based on our findings, this assumption may be incorrect due to variation of CUE with changing temperature. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: This study investigated: (i) the prevalence of ureaplasmas in semen and washed semen and (ii) the effect of ureaplasmas on semen andrology parameters. Design: Prospective study. Setting: IVF unit -private hospital, Brisbane, Australia. Patient(s): Three hundred and forty three men participating in an assisted reproductive technology (ART) treatment cycle. Intervention(s): Semen and washed semen tested by culture, PCR assays and indirect immunofluorescent antibody assays. Statistical differences were determined by a t-test, Wilcoxon or Pearson’s Chi- square test where appropriate. Main Outcome Measure(s): The prevalence of ureaplasmas in semen and washed semen and the effect of these microorganisms on semen andrology parameters. Result(s): Ureaplasmas were detected in 73/343 (22%) semen samples and 29/343 (8.5%) washed semen samples. Ureaplasmas adherent to the surface of spermatozoa were demonstrated by indirect immunofluorescent antibody testing. U. parvum serovar 6 (36.6%) and U. urealyticum (30%) were the most prevalent isolates in washed semen. A comparison of the semen andrology parameters of washed semen ureaplasma positive and negative groups demonstrated a lower proportion of non-motile sperm in the washed semen ureaplasma positive group. Conclusion(s): Ureaplasmas are not always removed from semen by a standard ART washing procedure and can remain adherent to the surface of spermatozoa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microbial pollution in water periodically affects human health in Australia, particularly in times of drought and flood. There is an increasing need for the control of waterborn microbial pathogens. Methods, allowing the determination of the origin of faecal contamination in water, are generally referred to as Microbial Source Tracking (MST). Various approaches have been evaluated as indicatorsof microbial pathogens in water samples, including detection of different microorganisms and various host-specific markers. However, until today there have been no universal MST methods that could reliably determine the source (human or animal) of faecal contamination. Therefore, the use of multiple approaches is frequently advised. MST is currently recognised as a research tool, rather than something to be included in routine practices. The main focus of this research was to develop novel and universally applicable methods to meet the demands for MST methods in routine testing of water samples. Escherichia coli was chosen initially as the object organism for our studies as, historically and globally, it is the standard indicator of microbial contamination in water. In this thesis, three approaches are described: single nucleotide polymorphism (SNP) genotyping, clustered regularly interspaced short palindromic repeats (CRISPR) screening using high resolution melt analysis (HRMA) methods and phage detection development based on CRISPR types. The advantage of the combination SNP genotyping and CRISPR genes has been discussed in this study. For the first time, a highly discriminatory single nucleotide polymorphism interrogation of E. coli population was applied to identify the host-specific cluster. Six human and one animal-specific SNP profile were revealed. SNP genotyping was successfully applied in the field investigations of the Coomera watershed, South-East Queensland, Australia. Four human profiles [11], [29], [32] and [45] and animal specific SNP profile [7] were detected in water. Two human-specific profiles [29] and [11] were found to be prevalent in the samples over a time period of years. The rainfall (24 and 72 hours), tide height and time, general land use (rural, suburban), seasons, distance from the river mouth and salinity show a lack of relashionship with the diversity of SNP profiles present in the Coomera watershed (p values > 0.05). Nevertheless, SNP genotyping method is able to identify and distinquish between human- and non-human specific E. coli isolates in water sources within one day. In some samples, only mixed profiles were detected. To further investigate host-specificity in these mixed profiles CRISPR screening protocol was developed, to be used on the set of E. coli, previously analysed for SNP profiles. CRISPR loci, which are the pattern of previous DNA coliphages attacks, were considered to be a promising tool for detecting host-specific markers in E. coli. Spacers in CRISPR loci could also reveal the dynamics of virulence in E. coli as well in other pathogens in water. Despite the fact that host-specificity was not observed in the set of E. coli analysed, CRISPR alleles were shown to be useful in detection of the geographical site of sources. HRMA allows determination of ‘different’ and ‘same’ CRISPR alleles and can be introduced in water monitoring as a cost-effective and rapid method. Overall, we show that the identified human specific SNP profiles [11], [29], [32] and [45] can be useful as marker genotypes globally for identification of human faecal contamination in water. Developed in the current study, the SNP typing approach can be used in water monitoring laboratories as an inexpensive, high-throughput and easy adapted protocol. The unique approach based on E. coli spacers for the search for unknown phage was developed to examine the host-specifity in phage sequences. Preliminary experiments on the recombinant plasmids showed the possibility of using this method for recovering phage sequences. Future studies will determine the host-specificity of DNA phage genotyping as soon as first reliable sequences can be acquired. No doubt, only implication of multiple approaches in MST will allow identification of the character of microbial contamination with higher confidence and readability.