967 resultados para somatic cell count in cows
Resumo:
Given that highly active antiretroviral therapy (HAART) has been demonstrated useful to restore immune competence in type-1 human immunodeficiency virus (HIV-1)-infected subjects, we evaluated the specific antibody response to influenza vaccine in a cohort of HIV-1-infected children on HAART so as to analyze the quality of this immune response in patients under antiretroviral therapy. Sixteen HIV-1-infected children and 10 HIV-1 seronegative controls were immunized with a commercially available trivalent inactivated influenza vaccine containing the strains A/H1N1, A/H3N2, and B. Serum hemagglutinin inhibition (HI) antibody titers were determined for the three viral strains at the time of vaccination and 1 month later. Immunization induced a significantly increased humoral response against the three influenza virus strains in controls, and only against A/H3N2 in HIV-1-infected children. The comparison of post-vaccination HI titers between HIV-1+ patients and HIV-1 negative controls showed significantly higher HI titers against the three strains in controls. In addition, post vaccination protective HI titers (defined as equal to or higher than 1:40) against the strains A/H3N2 and B were observed in a lower proportion of HIV-1+ children than in controls, while a similar proportion of individuals from each group achieved protective HI titers against the A/H1N1 strain. The CD4+ T cell count, CD4/CD8 T cells ratio, and serum viral load were not affected by influenza virus vaccination when pre- vs post-vaccination values were compared. These findings suggest that despite the fact that HAART is efficient in controlling HIV-1 replication and in increasing CD4+ T cell count in HIV-1-infected children, restoration of immune competence and response to cognate antigens remain incomplete, indicating that additional therapeutic strategies are required to achieve a full reconstitution of immune functions.
Resumo:
Reconstructive procedures after resection of nasal basal cell carcinoma (BCC) vary depending on the subunit involved. The aim of the present study was to assess the influence of the location of the BCC on the rate of incomplete excisions, so we made a retrospective analysis of all nasal BCC excised at our hospital between 2002 and 2005. The incomplete excision rate was 24/148 (16%). More incomplete excision occurred on the alae (n=13) when compared to the dorsum (n=2) of the nose (p<0.05). Eight two-staged procedures resulted in incomplete resection, whereas 9 (6%) frozen section analyses were false-negative. BCC were most likely to be incompletely excised on the nasal tip and alae, and both subunits required more elaborate reconstructions. This, however, was not the result of poor estimation of the extent of the tumour and reluctance to excise more challenging areas widely for reconstruction, but to the method chosen to eradicate the tumour.
Resumo:
Minor lymphocyte stimulating (Mls) antigens specifically stimulate T cell responses that are restricted to particular T cell receptor (TCR) beta chain variable domains. The Mls phenotype is genetically controlled by an open reading frame (orf) located in the 3' long terminal repeat of mouse mammary tumor virus (MMTV); however, the mechanism of action of the orf gene product is unknown. Whereas predicted orf amino acid sequences show strong overall homology, the 20-30 COOH-terminal residues are strikingly polymorphic. This polymorphic region correlates with TCR V beta specificity. We have generated monoclonal antibodies to a synthetic peptide encompassing the 19 COOH-terminal amino acid residues of Mtv-7 orf, which encodes the Mls-1a determinant. We show here that these antibodies block Mls responses in vitro and can interfere specifically with thymic clonal deletion of Mls-1a reactive V beta 6+ T cells in neonatal mice. Furthermore, the antibodies can inhibit V beta 6+ T cell responses in vivo to an infectious MMTV that shares orf sequence homology and TCR specificity with Mtv-7. These results confirm the predicted extracellular localization of the orf COOH terminus and imply that the orf proteins of both endogenous and exogenous MMTV interact directly with TCR V beta.
Resumo:
1. Mise en perspective de l'étude La grippe est une cause importante de morbidité et de mortalité après la transplantation d'organe. Bien que la principale stratégie de prévention de la grippe après la transplantation d'organes soit l'administration du vaccin antigrippal annuel, l'immunogénicité de ce vaccin chez les greffés d'organe n'est pas optimale. Nous avons effectué une étude prospective pour évaluer l'influence de la thérapie d'induction sur l'immunogénicité du vaccin de la grippe. 2. Méthodes Nous avons comparé la réponse au vaccin de la grippe chez deux groupes de greffés rénaux en fonction de la thérapie d'induction reçu (thymoglobulin vs basiliximab). Le taux des anticorps ont étés mesurés par inhibition de l'hémagglutination (HI). La réponse au vaccin (taux de séroconversion) a été définie comme l'augmentation > 4 fois du taux d'anticorps (immunoglobulines) et ceci a été notre outcome primaire. 3. Résultats Soixante transplantés rénaux ont été inclus dans l'étude (thymoglobuline=22, basiliximab=38). Les patients dans le group traité par thymoglobuline étaient plus âgés (p=0.16), avaient des valeurs de créatinine plus élevés (p=0.16) et avaient étés transplanté auparavant (p=0.02). Aucune différence n'a été mise en évidence au niveau de taux des immunoglobulines pour les 3 souches virales entre les 2 groupes (p=0.69 pour H INI, p=0.56 pour H3N2, p=0.7 pour Influenza Β). Le taux de séroconversion à au moins une souche virale a été de 68 % pour le groupe thymoglobuline et de 73% pour le groupe basiliximab (p=0.77). 4. Conclusion Aucune différence significative n'a été démontré dans l'immunogénicité du vaccin de la grippe dans les transplantés rénaux ayant reçu soit du thymoglobuline soit du basiliximab comme traitement d'induction.
Resumo:
The ability of vaccines to induce memory cytotoxic T-cell responses in the lung is crucial in stemming and treating pulmonary diseases caused by viruses and bacteria. However, most approaches to subunit vaccines produce primarily humoral and only to a lesser extent cellular immune responses. We developed a nanoparticle (NP)-based carrier that, upon delivery to the lung, specifically targets pulmonary dendritic cells, thus enhancing antigen uptake and transport to the draining lymph node; antigen coupling via a disulfide link promotes highly efficient cross-presentation after uptake, inducing potent protective mucosal and systemic CD8(+) T-cell immunity. Pulmonary immunization with NP-conjugated ovalbumin (NP-ova) with CpG induced a threefold enhancement of splenic antigen-specific CD8(+) T cells displaying increased CD107a expression and IFN-γ production compared with immunization with soluble (i.e., unconjugated) ova with CpG. This enhanced response was accompanied by a potent Th17 cytokine profile in CD4(+) T cells. After 50 d, NP-ova and CpG also led to substantial enhancements in memory CD8(+) T-cell effector functions. Importantly, pulmonary vaccination with NP-ova and CpG induced as much as 10-fold increased frequencies of antigen-specific effector CD8(+) T cells to the lung and completely protected mice from morbidity following influenza-ova infection. Here, we highlight recruitment to the lung of a long-lasting pool of protective effector memory cytotoxic T-cells by our disulfide-linked antigen-conjugated NP formulation. These results suggest the reduction-reversible NP system is a highly promising platform for vaccines specifically targeting intracellular pathogens infecting the lung.
Resumo:
BACKGROUND The role of genes involved in the control of progression from the G1 to the S phase of the cell cycle in melanoma tumors in not fully known. The aim of our study was to analyse mutations in TP53, CDKN1A, CDKN2A, and CDKN2B genes in melanoma tumors and melanoma cell lines METHODS We analysed 39 primary and metastatic melanomas and 9 melanoma cell lines by single-stranded conformational polymorphism (SSCP). RESULTS The single-stranded technique showed heterozygous defects in the TP53 gene in 8 of 39 (20.5%) melanoma tumors: three new single point mutations in intronic sequences (introns 1 and 2) and exon 10, and three new single nucleotide polymorphisms located in introns 1 and 2 (C to T transition at position 11701 in intron 1; C insertion at position 11818 in intron 2; and C insertion at position 11875 in intron 2). One melanoma tumor exhibited two heterozygous alterations in the CDKN2A exon 1 one of which was novel (stop codon, and missense mutation). No defects were found in the remaining genes. CONCLUSION These results suggest that these genes are involved in melanoma tumorigenesis, although they may be not the major targets. Other suppressor genes that may be informative of the mechanism of tumorigenesis in skin melanomas should be studied.
Resumo:
CONCLUSION: There are several factors that influence the final outcome when treating oral squamous cell carcinoma (OSCC). Invasive front phenomena and more importantly their clinicopathological translation can have a direct impact on survival, and subsequently on the decision for an adjuvant treatment. OBJECTIVES: In recent years, the concept of tumor-host interaction has been the subject of substantial efforts in cancer research. Tumoral behavior may be better understood when studying the changes occurring at the tumor-host interface. This study evaluated the influence of several clinicopathological features on the outcome of OSCCs. METHODS: The clinical records and pathology specimens of 54 patients with OSCC treated by primary resection were reviewed retrospectively. The pathologic features reviewed were: invasive front grading (IFG), stromal reaction, lymphovascular invasion (LVI), perineural invasion (PNI), margin status, and depth of invasion. RESULTS: High IFGs had a significant relationship with pT status and pN status. High IFGs were strongly correlated with nodal metastases (odds ratio (OR) = 4.77; confidence interaval (CI) = 1.37-16.64). Concerning survival, IFG had a strong impact on disease-free survival in patients treated unimodally, as did the depth of invasion in the same group. Lymphovascular involvement was found to have a negative impact on overall survival in patients treated multimodally.
Resumo:
One century after its discovery, Chagas disease, caused by the protozoan, Trypanosoma cruzi, remains a major health problem in Latin America. Mortality and morbidity are mainly due to chronic processes that lead to dysfunction of the cardiac and digestive systems. About one third of the chronic chagasic individuals have or will develop the symptomatic forms of the disease, with cardiomyopathy being the most common chronic form. This is a progressively debilitating disease for which there are no currently available effective treatments other than heart transplantation. Like in other cardiac diseases, tissue engineering and cell therapy have been investigated in the past few years as a means of recovering the heart function lost as a consequence of chronic damage caused by the immune-mediated pathogenic mechanisms elicited in individuals with chronic chagasic cardiomyopathy. Here we review the studies of cell therapy in animal models and patients with chronic Chagas disease and the perspectives of the recovery of the heart function lost due to infection with T. cruzi.
Resumo:
BACKGROUND: Alterations in glucose metabolism and epithelial-mesenchymal transition (EMT) constitute two important characteristics of carcinoma progression toward invasive cancer. Despite an extensive characterization of each of them separately, the links between EMT and glucose metabolism of tumor cells remain elusive. Here we show that the neuronal glucose transporter GLUT3 contributes to glucose uptake and proliferation of lung tumor cells that have undergone an EMT. RESULTS: Using a panel of human non-small cell lung cancer (NSCLC) cell lines, we demonstrate that GLUT3 is strongly expressed in mesenchymal, but not epithelial cells, a finding corroborated in hepatoma cells. Furthermore, we identify that ZEB1 binds to the GLUT3 gene to activate transcription. Importantly, inhibiting GLUT3 expression reduces glucose import and the proliferation of mesenchymal lung tumor cells, whereas ectopic expression in epithelial cells sustains proliferation in low glucose. Using a large microarray data collection of human NSCLCs, we determine that GLUT3 expression correlates with EMT markers and is prognostic of poor overall survival. CONCLUSIONS: Altogether, our results reveal that GLUT3 is a transcriptional target of ZEB1 and that this glucose transporter plays an important role in lung cancer, when tumor cells loose their epithelial characteristics to become more invasive. Moreover, these findings emphasize the development of GLUT3 inhibitory drugs as a targeted therapy for the treatment of patients with poorly differentiated tumors.
Resumo:
The neonatal immune response is impaired during the first weeks after birth. To obtain a better understanding of this immaturity, we investigated the development of T cell interactions with B cells in mice. For this purpose, we analyzed the immune response to three T-dependent antigens in vivo: (i) the polyclonal antibody response induced by vaccinia virus; (ii) the production of polyclonal and specific antibodies following immunization with hapten-carrier conjugates; (iii) the mouse mammary tumor virus superantigen (sAg) response involving an increase in sAg-reactive T cells and induction of polyclonal antibody production. After vaccinia virus injection into neonates, the polyclonal antibody response was similar to that observed in adult mice. The antibody response to hapten-carrier conjugates, however, was delayed and reduced. Injection with sAg-expressing B cells from neonatal or adult mice allowed us to determine whether B cells, T cells or both were implicated in the reduced immune response. In these sAg responses, neonatal T cells were stimulated by both neonatal and adult sAg-presenting B cells but only B cells from adult mice differentiated into IgM- and IgG-secreting plasma cells in the neonatal environment in vivo. Injecting neonatal B cells into adult mice did not induce antibody production. These results demonstrate that the environment of the neonatal lymph node is able to support a T and B cell response, and that immaturity of B cells plays a key role in the reduced immune response observed in the neonate.
Resumo:
In the current study, we evaluated the mechanism of action of miltefosine, which is the first effective and safe oral treatment for visceral leishmaniasis, in Leishmania amazonensis promastigotes. Miltefosine induced a process of programmed cell death, which was determined by the externalization of phosphatidylserine, the incorporation of propidium iodide, cell-cycle arrest at the sub-G0/G1 phase and DNA fragmentation into oligonucleosome-sized fragments. Despite the intrinsic variation that is detected in Leishmania spp, our results indicate that miltefosine causes apoptosis-like death in L. amazonensis promastigote cells using a similar process that is observed in Leishmania donovani.
Overexpression of SMARCE1 is associated with CD8+ T-cell infiltration in early stage ovarian cancer.
Resumo:
T-lymphocyte infiltration in ovarian tumors has been linked to a favorable prognosis, hence, exploring the mechanism of T-cell recruitment in the tumor is warranted. We employed a differential expression analysis to identify genes over-expressed in early stage ovarian cancer samples that contained CD8 infiltrating T-lymphocytes. Among other genes, we discovered that TTF1, a regulator of ribosomal RNA gene expression, and SMARCE1, a factor associated with chromatin remodeling were overexpressed in first stage CD8+ ovarian tumors. TTF1 and SMARCE1 mRNA levels showed a strong correlation with the number of intra-tumoral CD8+ cells in ovarian tumors. Interestingly, forced overexpression of SMARCE1 in SKOV3 ovarian cancer cells resulted in secretion of IL8, MIP1b and RANTES chemokines in the supernatant and triggered chemotaxis of CD8+ lymphocytes in a cell culture assay. The potency of SMARCE1-mediated chemotaxis appeared comparable to that caused by the transfection of the CXCL9 gene, coding for a chemokine known to attract T-cells. Our analysis pinpoints TTF1 and SMARCE1 as genes potentially involved in cancer immunology. Since both TTF1 and SMARCE1 are involved in chromatin remodeling, our results imply an epigenetic regulatory mechanism for T-cell recruitment that invites deciphering.
Resumo:
Allergy is an immunological disorder of the upper airways, lung, skin, and the gut with a growing prevalence over the last decades in Western countries. Atopy, the genetic predisposition for allergy, is strongly dependent on familial inheritance and environmental factors. These observations call for predictive markers of progression from atopy to allergy, a prerequisite to any active intervention in neonates and children (prophylactic interventions/primary prevention) or in adults (immunomodulatory interventions/secondary prevention). In an attempt to identify early biomarkers of the "atopic march" using minimally invasive sampling, CD4+ T cells from 20 adult volunteers (10 healthy and 10 with respiratory allergies) were isolated and quantitatively analyzed and their proteomes were compared in and out of pollen season (± antigen exposure). The proteome study based on high-resolution 2D gel electrophoresis revealed three candidate protein markers that distinguish the CD4+ T cell proteomes of normal from allergic individuals when sampled out of pollen season, namely Talin 1, Nipsnap homologue 3A, and Glutamate-cysteine ligase regulatory protein. Three proteins were found differentially expressed between the CD4+ T cell proteomes of normal and allergic subjects when sampled during pollen season: carbonyl reductase, glutathione S-transferase ω 1, and 2,4-dienoyl-CoA reductase. The results were partly validated by Western blotting.
Resumo:
Human immunodeficiency virus (HIV)-1 infection has an important impact on malaria. Plasmodium falciparum and HIV-1 co-infected patients (Pf/HIV) present with a high degree of anaemia, enhanced parasitaemia and decreased CD4+ T cell counts, which increase the risk of developing severe malaria. In addition, infection with either Pf or HIV-1 alone causes extensive immune activation. Our hypothesis was that lymphocyte activation is potentiated in Pf/HIV co-infected patients, consequently worsening their immunosuppressed state. To test this hypothesis, 22 Pf/HIV patients, 34 malaria patients, 29 HIV/AIDS patients and 10 healthy controls without malaria or HIV/acquired immune deficiency syndrome (AIDS) from Maputo/Mozambique were recruited for this study. As expected, anaemia was most prevalent in the Pf/HIV group. A significant variation in parasite density was observed in the Pf/HIV co-infected group (110-75,000 parasites/µL), although the median values were similar to those of the malaria only patients. The CD4+ T cell counts were significantly lower in the Pf/HIV group than in the HIV/AIDS only or malaria only patients. Lymphocyte activation was evaluated by the percentage of activation-associated molecules [CD38 expression on CD8+ and human leukocyte antigen-DR expression on CD3+ T cells]. The highest CD38 expression was detected in the Pf/HIV co-infected patients (median = 78.2%). The malaria only (median = 50%) and HIV/AIDS only (median = 52%) patients also exhibited elevated levels of these molecules, although the values were lower than those of the Pf/HIV co-infected cases. Our findings suggest that enhanced T-cell activation in co-infected patients can worsen the immune response to both diseases.