975 resultados para solubility constant K-H


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conventional differential scanning calorimetry (DSC) techniques are commonly used to quantify the solubility of drugs within polymeric-controlled delivery systems. However, the nature of the DSC experiment, and in particular the relatively slow heating rates employed, limit its use to the measurement of drug solubility at the drug's melting temperature. Here, we describe the application of hyper-DSC (HDSC), a variant of DSC involving extremely rapid heating rates, to the calculation of the solubility of a model drug, metronidazole, in silicone elastomer, and demonstrate that the faster heating rates permit the solubility to be calculated under non-equilibrium conditions such that the solubility better approximates that at the temperature of use. At a heating rate of 400 degrees C/min (HDSC), metronidazole solubility was calculated to be 2.16 mg/g compared with 6.16 mg/g at 20 degrees C/min. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The speeds of sound u in, densities ? and refractive indices nD of some homologous series, such as n-alkyl ethanoates, n-alkyl propionates, methyl alkanoates, ethyl alkanoates, dialkyl malonates, and alkyl haloalkanoates, were measured in the temperature range from 298.15 to 333.15 K. Molar volume V, isentropic and isothermal compressibilities ?S and ?T, molar refraction Rm, Eykman’s constant Cm, molecular radius r, Rao’s molar function R, thermal expansion coefficient a, thermal pressure coefficient ?, and Flory’s characteristic parameters image, P*, V*, and T* have been calculated from the measured experimental data. Applicability of Rao theory and Flory–Patterson–Pandey (FPP) theory have been examined and discussed for these alkanoates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The speeds of sound u, densities ? and refractive indices nD of homologous series of mono-, di-, and tri-alkylamines were measured in the temperature range from 298.15 to 328.15 K. Isentropic and isothermal compressibilities ?S and ?T, molar refraction Rm, Eykman’s constant Cm, Rao’s molar sound function R, thermal expansion coefficient a, thermal pressure coefficient ?, and reduction parameters P*, V*, and T* in frameworks of the ERAS model for associated amines and Flory model for tertiary amines have been calculated from the measured experimental data. Applicability of the Rao theory and the ERAS and Flory models have been examined and discussed for the alkyl amines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

X-Ray Photoelectron Spectroscopy (XPS) was used to quantify the amount of bromide ions present in two samples of [C(4)mpyrr]Br dissolved in the room temperature ionic liquid (RTIL) [C(4)mpyrr][N(Tf)(2)]. One sample was of a known concentration (0.436 Br atom%); the other was a saturated solution. The results obtained from quantitative XPS analysis indicated that the saturated sample had a concentration, or solubility, of 0.90 Br atom% (746 mM) at 298 K, which was then independently confirmed by potential-step chronoamperometry of the same solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of the addition of acetonitrile on the solubility of carbon dioxide in an ionic liquid, the 1-ethyl-3- methylimidazolium bis(trifluoromethanesulfonyl)amide, [C(2)mim][NTf2], was studied experimentally at pressures close to atmospheric and as a function of temperature between 290 and 335 K. It was observed that the solubility of carbon dioxide decreases linearly with the mole fraction of acetonitrile from a value of 2.6 x 10(-2) in the pure ionic liquid at 303 K to a mole fraction of 1.3 x 10(-2) in the mixture [C(2)mim][NTf2] + CH3CN with x(CH3CN) = 0.77 at the same temperature. The gas solubility decreases with temperature, and the thermodynamic properties of solvation could be calculated. The vapor pressures of the [ C2mim][ NTf2] + CH3CN mixtures were measured in the same temperature range, and strong negative deviations from Raoult's law were obtained: up to 36% for a mixture with x(CH3CN) = 0.46 at 334 K. Negative excess molar volumes of approximately -1 cm(3) mol(-1) at equimolar composition could also be calculated from density measurements of the pure components and of the mixtures. These observations are confirmed by neutron diffraction studies and are compatible with the existence of strong ion-dipole interactions in the mixed liquid solvent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reduction of oxygen was studied over a range of temperatures (298-318 K) in n-hexyltriethylammonium bis(trifluoromethanesulfonyl)imide, [N-6,N-2,N-2,N-2][NTf2], and 1-butyl-2,3-methylimidazolium bis(trifluoromethanesulfonyl)imide, [C(4)dmim][NTf2] on both gold and platinum microdisk electrodes, and the mechanism and electrode kinetics of the reaction investigated. Three different models were used to simulate the CVs, based on a simple electron transfer ('E'), an electron transfer coupled with a reversible homogeneous chemical step ('ECrev') and an electron transfer followed by adsorption of the reduction product ('EC(ads)'), and where appropriate, best fit parameters deduced, including the heterogeneous rate constant, formal electrode potential, transfer coefficient, and homogeneous rate constants for the ECrev mechanism, and adsorption/desorption rate constants for the EC(ads) mechanism. It was concluded from the good simulation fits on gold that a simple E process operates for the reduction of oxygen in [N-6,N-2,N-2,N-2][NTf2], and an ECrev process for [C(4)dmim][NTf2], with the chemical step involving the reversible formation of the O-2(center dot-)center dot center dot center dot [C(4)dmim](+) ion-pair. The E mechanism was found to loosely describe the reduction of oxygen in [N-6,N-2,N-2,N-2][NTf2] on platinum as the simulation fits were reasonable although not perfect, especially for the reverse wave. The electrochemical kinetics are slower on Pt, and observed broadening of the oxidation peak is likely due to the adsorption of superoxide on the electrode surface in a process more complex than simple Langmuirian. In [C(4)dmim][NTf2] the O-2(center dot-) predominantly ion-pairs with the solvent rather than adsorbs on the surface, and an ECrev quantitatively describes the reduction of oxygen on Pt also.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The solubility of manganese in mercury was determined electrochemically via amalgamation and stripping in the room temperature ionic liquid n-hexyltriethylammonium bis(trifluoromethanesulfonyl)imide, [N-6,N-2,N-2,N-2][NTf2]. A hemispherical mercury electrode was made by electrodepositing mercury onto a planar platinum microelectrode. Cyclic voltammetry of Mn2+ in [N-6,N-2,N-2,N-2][NTf2] at the mercury microhemisphere electrode was investigated at temperatures of 298, 303 and 313 K. The solubility of Mn in Hg was determined on the basis of the charge under the reduction peak (Mn2+ --> Mn-0) and the corresponding reoxidation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental values for the solubility of carbon dioxide and hydrogen in three room temperature ionic liquids based on the same anion- (bistrifluoromethylsulfonyl)imide [Ntf2]-and three different cations-1-butyl-3-methylimidazolium, [C4mim], 1-ethyl-3- methylimidazolium, [C2mim] and trimethyl-butylammonium, [N 4111]-are reported between 283 and 343 K and close to atmospheric pressure. Carbon dioxide, with a mole-fraction solubility of the order of 10-2, is two orders of magnitude more soluble than hydrogen. The solubility of CO2 is very similar in the three ionic liquids although slightly lower in the presence of the [C2mim] cation. In the case of H2, noticeable differences were observed with larger mole fraction solubilities in the presence of [N4111] followed by [C 4mim]. All of the mole-fraction solubilities decrease with increasing temperature. From the variation of Henry's law constants with temperature, the thermodynamic functions of solvation were calculated. The precision of the experimental data, considered as the average absolute deviation of the Henry's law constants from appropriate smoothing equations, is always better than ±1%. © Springer Science+Business Media, LLC 2007.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work was to study the influence of changing the cation of the ionic liquid (IL) on gas solubility. For this purpose, the low-pressure solubility of carbon dioxide and of ethane in three ILs based on the bis{(trifluoromethyl)sulfonyl}imide anion ([NTf2](-)) was determined experimentally. Solubility data is reported for 1-ethyl-3-methylimidazolium ([C(1)C(2)Im](+)), 1-butyl-1-methylpyrrolidinium ([C(1)C(4)pyrr](+)) and propylcholinium ([N1132-OH](+)) bis{(trifluoromethyl)sulfonyl}imide ILs between 300 and 345 K. These data are precise to within +/- 1% and accurate to within +/- 5%. In these ILs, carbon dioxide (mole fraction solubility between 1 and 3 x 10(-2), molarity between 0.03 and 0.1 mol L-1) is one order of magnitude more soluble than ethane. The effect of changing the cation is small but significant. Changing the cation has a similar effect on both gases even if the differences are more pronounced in the case of ethane with the order of solubility [C(1)C(4)pyrr][NTf2] > [C(1)C(2)Im][NTf2] > [N1132-OH][NTf2]. For all the systems, the solubility decreases with temperature corresponding to exothermic processes of solvation and negative enthalpies and entropies of solvation were calculated. The properties of solvation of the two gases in [C(1)C(4)pyrr][NTf2] do not vary significantly with temperature while important variations are depicted for both gases in [C(1)C(2)Im][NTf2]. (c) 2007 Elsevier B.V. All rights reserved.