445 resultados para soliton


Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is shown that the affine Toda models (AT) constitute a gauge fixed version of the conformal affine Toda model (CAT). This result enables one to map every solution of the AT models into an infinite number of solutions of the corresponding CAT models, each one associated to a point of the orbit of the conformal group. The Hirota τ-functions are introduced and soliton solutions for the AT and CAT models associated to SL̂ (r+1) and SP̂ (r) are constructed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the Hamiltonian reduction of the two-loop Wess-Zumino-Novikov-Witten model (WZNW) based on an untwisted affine Kac-Moody algebra script Ĝ. The resulting reduced models, called Generalized Non-Abelian Conformal Affine Toda (G-CAT), are conformally invariant and a wide class of them possesses soliton solutions; these models constitute non-Abelian generalizations of the conformal affine Toda models. Their general solution is constructed by the Leznov-Saveliev method. Moreover, the dressing transformations leading to the solutions in the orbit of the vacuum are considered in detail, as well as the τ-functions, which are defined for any integrable highest weight representation of script Ĝ, irrespectively of its particular realization. When the conformal symmetry is spontaneously broken, the G-CAT model becomes a generalized affine Toda model, whose soliton solutions are constructed. Their masses are obtained exploring the spontaneous breakdown of the conformal symmetry, and their relation to the fundamental particle masses is discussed. We also introduce what we call the two-loop Virasoro algebra, describing extended symmetries of the two-loop WZNW models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate higher grading integrable generalizations of the affine Toda systems, where the flat connections defining the models take values in eigensubspaces of an integral gradation of an affine Kac-Moody algebra, with grades varying from l to -l (l > 1). The corresponding target space possesses nontrivial vacua and soliton configurations, which can be interpreted as particles of the theory, on the same footing as those associated to fundamental fields. The models can also be formulated by a hamiltonian reduction procedure from the so-called two-loop WZNW models. We construct the general solution and show the classes corresponding to the solitons. Some of the particles and solitons become massive when the conformal symmetry is spontaneously broken by a mechanism with an intriguing topological character and leading to a very simple mass formula. The massive fields associated to nonzero grade generators obey field equations of the Dirac type and may be regarded as matter fields. A special class of models is remarkable. These theories possess a U(1 ) Noether current, which, after a special gauge fixing of the conformal symmetry, is proportional to a topological current. This leads to the confinement of the matter field inside the solitons, which can be regarded as a one-dimensional bag model for QCD. These models are also relevant to the study of electron self-localization in (quasi-)one-dimensional electron-phonon systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By considering the long-wavelength limit of the regularized long wave (RLW) equation, we study its multiple-time higher-order evolution equations. As a first result, the equations of the Korteweg-de Vries hierarchy are shown to play a crucial role in providing a secularity-free perturbation theory in the specific case of a solitary-wave solution. Then, as a consequence, we show that the related perturbative series can be summed and gives exactly the solitary-wave solution of the RLW equation. Finally, some comments and considerations are made on the N-soliton solution, as well as on the limitations of applicability of the multiple-scale method in obtaining uniform perturbative series.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a solitary solution of the three-wave nonlinear partial differential equation (PDE) model - governing resonant space-time stimulated Brillouin or Raman backscattering - in the presence of a cw pump and dissipative material and Stokes waves. The study is motivated by pulse formation in optical fiber experiments. As a result of the instability any initial bounded Stokes signal is amplified and evolves to a subluminous backscattered Stokes pulse whose shape and velocity are uniquely determined by the damping coefficients and the cw-pump level. This asymptotically stable solitary three-wave structure is an attractor for any initial conditions in a compact support, in contrast to the known superluminous dissipative soliton solution which calls for an unbounded support. The linear asymptotic theory based on the Kolmogorov-Petrovskii-Piskunov assertion allows us to determine analytically the wave-front slope and the subluminous velocity, which are in remarkable agreement with the numerical computation of the nonlinear PDE model when the dynamics attains the asymptotic steady regime. © 1997 The American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It's believed that the simple Su-Schrieffer-Heeger Hamiltonian can not predict the insulator to metal transition of transpolyacetylene (t-PA). The soliton lattice configuration at a doping level y=6% still has a semiconductor gap. Disordered distributions of solitons close the gap, but the electronic states around the Fermi energy are localized. However, within the same framework, it is possible to show that a cluster of solitons can produce dramatic changes in the electronic structure, allowing an insulator-to-metal transition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a two-dimensional integrable and conformally invariant field theory possessing two Dirac spinors and three scalar fields. The interaction couples bilinear terms in the spinors to exponentials of the scalars. Its integrability properties are based on the sl(2) affine Kac-Moody algebra, and it is a simple example of the so-called conformal affine Toda theories coupled to matter fields. We show, using bosonization techniques, that the classical equivalence between a U(1) Noether current and the topological current holds true at the quantum level, and then leads to a bag model like mechanism for the confinement of the spinor fields inside the solitons. By bosonizing the spinors we show that the theory decouples into a sine-Gordon model and free scalars. We construct the two-soliton solutions and show that their interactions lead to the same time delays as those for the sine-Gordon solitons. The model provides a good laboratory to test duality ideas in the context of the equivalence between the sine-Gordon and Thirring theories. © 2000 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We introduce and study new integrable models (IMs) of An (1)-nonabelian Toda type which admit U(1) ⊗ U(1) charged topological solitons. They correspond to the symmetry breaking SU(n + 1) → SU(2) ⊗ SU(2) ⊗ U(1)n-2 and are conjectured to describe charged dyonic domain walls of N = 1 SU(n + 1) SUSY gauge theory in large n limit. It is shown that this family of relativistic IMs corresponds to the first negative grade q = -1 member of a dyonic hierarchy of generalized cKP type. The explicit relation between the 1-soliton solutions (and the conserved charges as well) of the IMs of grades q = -1 and q = 2 is found. The properties of the IMs corresponding to more general symmetry breaking SU(n + 1) → SU(2)⊗p ⊗ U(1)n-p as well as IM with global SU(2) symmetries are discussed. © 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamics of a bright matter wave soliton in a quasi one-dimensional Bose-Einstein condensate (BEC) with a periodically rapidly varying time trap is considered. The governing equation is based on averaging the fast modulations of the Gross-Pitaevskii (GP) equation. This equation has the form of a GP equation with an effective potential of a more complicated structure than an unperturbed trap. In the case of an inverted (expulsive) quadratic trap corresponding to an unstable GP equation, the effective potential can be stable. For the bounded space trap potential it is showed that bifurcation exists, i.e. the single-well potential bifurcates to the triple-well effective potential. The stabilization of a BEC cloud on-site state in the temporary modulated optical lattice is found. This phenomenon is analogous to the Kapitza stabilization of an inverted pendulum. The analytical predictions of the averaged GP equation are confirmed by numerical simulations of the full GP equation with rapid perturbations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using the explicit numerical solution of the axially symmetric Gross-Pitaevskii equation we study the dynamics of interaction among vortex solitons in a rotating matter-wave bright soliton train in a radially trapped and axially free Bose-Einstein condensate to understand certain features of the experiment by Strecker et al (2002 Nature 417 150). In a soliton train, solitons of opposite phase (phase δ = π) repel and stay apart without changing shape; solitons with δ = 0 attract, interact and coalesce, but eventually come out; solitons with a general δ usually repel but interact inelastically by exchanging matter. We study this and suggest future experiments with vortex solitons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some properties of the higher grading integrable generalizations of the conformal affine Toda systems are studied. The fields associated to the non-zero grade generators are Dirac spinors. The effective action is written in terms of the Wess-Zumino-Novikov-Witten (WZNW) action associated to an affine Lie algebra, and an off-critical theory is obtained as the result of the spontaneous breakdown of the conformal symmetry. Moreover, the off-critical theory presents a remarkable equivalence between the Noether and topological currents of the model. Related to the off-critical model we define a real and local lagrangian provided some reality conditions are imposed on the fields of the model. This real action model is expected to describe the soliton sector of the original model, and turns out to be the master action from which we uncover the weak-strong phases described by (generalized) massive Thirring and sine-Gordon type models, respectively. The case of any (untwisted) affine Lie algebra furnished with the principal gradation is studied in some detail. The example of s^l(n) (n = 2, 3) is presented explicitly. © SISSA/ISAS 2003.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The investigation of the dynamics of a discrete soliton in an array of Bose-Einstein condensates under the action of a periodically time-modulated atomic scattering length [Feshbach-resonance management (FRM)] was discussed. The slow and rapid modulations, in comparison with the tunneling frequency were considered. An averaged equation, which was a generalized discrete nonlinear Schrödinger equation, including higher-order effective nonlinearities and intersite nonlinear interactions was derived in the case of the rapid modulation. It was demonstrated that the modulations of sufficient strength results in splitting of the soliton by direct simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We introduce a Skyrme type, four-dimensional Euclidean field theory made of a triplet of scalar fields n→, taking values on the sphere S2, and an additional real scalar field φ, which is dynamical only on a three-dimensional surface embedded in R4. Using a special ansatz we reduce the 4d non-linear equations of motion into linear ordinary differential equations, which lead to the construction of an infinite number of exact soliton solutions with vanishing Euclidean action. The theory possesses a mass scale which fixes the size of the solitons in way which differs from Derrick's scaling arguments. The model may be relevant to the study of the low energy limit of pure SU(2) Yang-Mills theory. © 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent experimental and theoretical advances in the creation and description of bright matter wave solitons are reviewed. Several aspects are taken into account, including the physics of soliton train formation as the nonlinear Fresnel diffraction, soliton-soliton interactions, and propagation in the presence of inhomogeneities. The generation of stable bright solitons by means of Feshbach resonance techniques is also discussed. © World Scientific Publishing Company.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We construct an infinite number of exact time dependent soliton solutions, carrying non-trivial Hopf topological charges, in a 3+1 dimensional Lorentz invariant theory with target space S2. The construction is based on an ansatz which explores the invariance of the model under the conformal group SO(4,2) and the infinite dimensional group of area preserving diffeomorphisms of S2. The model is a rare example of an integrable theory in four dimensions, and the solitons may play a role in the low energy limit of gauge theories. © SISSA 2006.