916 resultados para soil physical and chemical properties
Resumo:
Selective cell recognition and capture has recently attracted significant interest due to its potential importance for clinical, diagnostic, environmental, and security applications. Current methods for cell isolation from complex samples are largely dependent on cell size and density, with limited application scope as many of the target cells do not exhibit appreciable differences in this respect. The most recent and forthcoming developments in the area of selective recognition and capture of whole cells, based on natural receptors, as well as synthetic materials utilising physical and chemical properties of the target cell or microorganism, are highlighted. Particular focus is given to the development of cell complementary surfaces using the cells themselves as templating agents, by means of molecular imprinting, and their combination with sensing platforms for rapid cell detection in complex media. The benefits and challenges of each approach are discussed and a perspective of the future of this research area is given.
Resumo:
Os materiais microporosos e mesoporosos são potenciais catalisadores heterogéneos. Os zeólitos e outros materiais microporosos do tipo zeolítico tradicionais, têm átomos tetracoordenados no esqueleto. Nos últimos anos, um vasto número de titanossilicatos contendo Ti(IV) hexacoordenado e Si(IV) tetracoordenado, com estruturas tridimensionais, têm sido alvo de grande interesse. Um dos objectivos desta tese foi preparar silicatos microporosos, contendo átomos metálicos com número de coordenação superior a quatro, e possuindo quer novas estruturas quer propriedades físicas e químicas interessantes. Neste contexto, foi preparado um novo ítriossilicato de sódio, AV-1, análogo do raro mineral montregianite, Na4K2Y2Si16O38·10H2O. Este material é o primeiro sólido microporoso que contem quantidades estequiométricas de sódio (e ítrio) no esqueleto. Foi, também, sintetizado um silicato de cério, AV-5, análogo estrutural do mineral montregianite com potencial aplicação em optoelectrónica. Nesta tese é, ainda, descrita a síntese e caracterização estrutural de um silicato de cálcio hidratado, AV-2, análogo do raro mineral rhodesite (K2Ca4Na2Si16O38.12H2O). Na continuação do trabalho desenvolvido em Aveiro na síntese de novos titanossilicatos surgiu o interesse de preparar novos zirconossilicatos microporosos por síntese hidrotérmica. Foram preparados dois novos materiais análogos dos minerais petarasite Na5Zr2Si3O18(Cl,OH)·2H2O (AV-3) e kostylevite, K2Si3O9·H2O (AV-8). Foram, também, obtidos análogos sintéticos dos minerais parakeldyshite e wadeite, por calcinação a alta temperatura de AV-3 e de umbite sintética. A heterogeneização de complexos organometálicos na superfície de materiais mesoporosos do tipo M41S permite associar a grande actividade catalítica e a presença de sítios activos localizados típicos dos complexos organometálicos, com a robustez e fácil separação, características dos materiais mesoporosos siliciosos. Nesta dissertação relata-se a derivatização dos materiais MCM-41 e MCM-48 através da reacção de [SiMe2{(h5-C5H4)2}]Fe e [SiMe2{(h5-C5H4)2}]TiCl2 com os grupos silanol das superfícies mesoporosas. Os materiais MCMs derivatizados com ansa-titanoceno foram testados na epoxidação de cicloocteno a 323 K na presença de hidrogenoperóxido de t-butilo. Estudou-se a heterogeneização dos sais de complexos com ligação metal-metal [Mo2(MeCN)10][BF4]4, [Mo2(m-O2CMe)2(MeCN)6][BF4]2 e [Mo2(m- O2CMe)2(dppa)2(MeCN)2][BF4]2 via imobilização nos canais do MCM-41. A imobilização dos catalisadores homogéneos na superfície do MCM-41 envolve a saída dos ligandos nitrilo lábeis, preferencialmente em posição axial, através da reacção com os grupos Si-OH da sílica. Verificou-se que a ligação Mo-Mo se mantém intacta nos produtos finais. É provável que estes materiais sejam eficientes catalisadores heterogéneos em reacções de polimerização. As técnicas de caracterização utilizadas nesta tese foram a difracção de raios-X de pós, a microscopia electrónica de varrimento, a espectroscopia de ressonância magnética nuclear do estado sólido (núcleos 13C, 23Na e 29Si), as espectroscopias de Raman e infravermelho com transformadas de Fourier, as análises termogravimétricas e as análises de adsorção de água e azoto.
Resumo:
In the past few years a new generation of multifunctional nanoparticles (NPs) has been proposed for biomedical applications, whose structure is more complex than the structure of their predecessor monofunctional counterparts. The development of these novel NPs aims at enabling or improving the performance in imaging, diagnosis and therapeutic applications. The structure of such NPs comprises several components exhibiting various functionalities that enable the nanoparticles to perform multiple tasks simultaneously, such as active targeting of certain cells or compartmentalization, imaging and delivery of active drugs. This thesis presents two types of bimodal bio-imaging probes and describes their physical and chemical properties, namely their texture, structure, and 1H dynamics and relaxometry, in order to evaluate their potential as MRI contrast agents. The photoluminescence properties of these probes are studied, aiming at assessing their interest as optical contrast agents. These materials combine the properties of the trivalent lanthanide (Ln3+) complexes and nanoparticles, offering an excellent solution for bimodal imaging. The designed T1- type contrast agent are SiO2@APS/DTPA:Gd:Ln or SiO2@APS/PMN:Gd:Ln (Ln= Eu or Tb) systems, bearing the active magnetic center (Gd3+) and the optically-active ions (Eu3+ and Tb3+) on the surface of silica NPs. Concerning the relaxometry properties, moderate r1 increases and significant r2 increases are observed in the NPs presence, especially at high magnetic fields, due to susceptibility effects on r2. The Eu3+ ions reside in a single low-symmetry site, and the photoluminescence emission is not influenced by the simultaneous presence of Gd3+ and Eu3+. The presence of Tb3+, rather than Eu3+ ion, further increases r1 but decreases r2. The uptake of these NPs by living cells is fast and results in an intensity increase in the T1-weighted MRI images. The optical features of the NPs in cellular pellets are also studied and confirm the potential of these new nanoprobes as bimodal imaging agents. This thesis further reports on a T2 contrast agent consisting of core-shell NPs with a silica shell surrounding an iron oxide core. The thickness of this silica shell has a significant impact on the r2 and r2* relaxivities, and a tentative model is proposed to explain this finding. The cell viability and the mitochondrial dehydrogenase expression given by the microglial cells are also evaluated.
Resumo:
Industrial activities are the major sources of pollution in all environments. Depending on the type of industry, various levels of organic and inorganic pollutants are being continuously discharged into the environment. Although, several kinds of physical, chemical, biological or the combination of methods have been proposed and applied to minimize the impact of industrial effluents, few have proved to be totally effective in terms of removal rates of several contaminants, toxicity reduction or amelioration of physical and chemical properties. Hence, it is imperative to develop new and innovative methodologies for industrial wastewater treatment. In this context nanotechnology arises announcing the offer of new possibilities for the treatment of wastewaters mainly based on the enhanced physical and chemical proprieties of nanomaterials (NMs), which can remarkably increase their adsorption and oxidation potential. Although applications of NMs may bring benefits, their widespread use will also contribute for their introduction into the environment and concerns have been raised about the intentional use of these materials. Further, the same properties that make NMs so appealing can also be responsible for producing ecotoxicological effects. In a first stage, with the objective of selecting NMs for the treatment of organic and inorganic effluents we first assessed the potential toxicity of nanoparticles of nickel oxide (NiO) with two different sizes (100 and 10-20 nm), titanium dioxide (TiO2, < 25 nm) and iron oxide (Fe2O3, ≈ 85x425 nm). The ecotoxicological assessment was performed with a battery of assays using aquatic organisms from different trophic levels. Since TiO2 and Fe2O3 were the NMs that presented lower risks to the aquatic systems, they were selected for the second stage of this work. Thus, the two NMs pre-selected were tested for the treatment of olive mill wastewater (OMW). They were used as catalyst in photodegradation systems (TiO2/UV, Fe2O3/UV, TiO2/H2O2/UV and Fe2O3/H2O2/UV). The treatments with TiO2 or Fe2O3 combined with H2O2 were the most efficient in ameliorating some chemical properties of the effluent. Regarding the toxicity to V. fischeri the highest reduction was recorded for the H2O2/UV system, without NMs. Afterwards a sequential treatment using photocatalytic oxidation with NMs and degradation with white-rot fungi was applied to OMW. This new approach increased the reduction of chemical oxygen demand, phenolic content and ecotoxicity to V. fischeri. However, no reduction in color and aromatic compounds was achieved after 21 days of biological treatment. The photodegradation systems were also applied to treat the kraft pulp mill and mining effluents. For the organic effluent the combination NMs and H2O2 had the best performances in reduction the chemical parameters as well in terms of toxicity reduction. However, for the mine effluent the best (TiO2/UV and Fe2O3/UV) were only able to significantly remove three metals (Zn, Al and Cd). Nonetheless the treatments were able of reducing the toxicity of the effluent. As a final stage, the toxicity of solid wastes formed during wastewater treatment with NMs was assessed with Chironomus riparius larvae, a representative species of the sediment compartment. Certain solid wastes showed the potential to negatively affect C. riparius survival and growth, depending on the type of effluent treated. This work also brings new insights to the use of NMs for the treatment of industrial wastewaters. Although some potential applications have been announced, many evaluations have to be performed before the upscaling of the chemical treatments with NMs.
Resumo:
As reactive extraction grown more and more popular in a variety of technological applications, optimizing its performance becomes more and more important. The process of complex formation is affected by a great number of both physical and chemical properties of all the components involved, and sometimes their interference with one another makes improving the effectiveness of such processes very difficult. In this Master’s Theses, the processes of complex formation between the aqueous phase - represented by copper sulfate water solution, and organic phase – represented by Acorga M5640 solvent extractor, were studied in order to establish the effect these components have on reactive extraction performance and to determine which step is bottlenecking the process the most.
Resumo:
The main objective of the present study is to understand different mechanisms involved in the production and evolution of plasma by the pulsed laser ablation and radio frequency magnetron sputtering. These two methods are of particular interest, as these are well accomplished methods used for surface coatings, nanostructure fabrications and other thin film devices fabrications. Material science researchers all over the world are involved in the development of devices based on transparent conducting oxide (TCO) thin films. Our laboratory has been involved in the development of TCO devices like thin film diodes using zinc oxide (ZnO) and zinc magnesium oxide (ZnMgO), thin film transistors (TFT's) using zinc indium oxide and zinc indium tin oxide, and some electroluminescent (EL) devices by pulsed laser ablation and RF magnetron sputtering.In contrast to the extensive literature relating to pure ZnO and other thin films produced by various deposition techniques, there appears to have been relatively little effort directed towards the characterization of plasmas from which such films are produced. The knowledge of plasma dynamics corresponding to the variations in the input parameters of ablation and sputtering, with the kind of laser/magnetron used for the generation of plasma, is limited. To improve the quality of the deposited films for desired application, a sound understanding of the plume dynamics, physical and chemical properties of the species in the plume is required. Generally, there is a correlation between the plume dynamics and the structural properties of the films deposited. Thus the study of the characteristics of the plume contributes to a better understanding and control of the deposition process itself. The hydrodynamic expansion of the plume, the composition, and SIze distribution of clusters depend not only on initial conditions of plasma production but also on the ambient gas composition and pressure. The growth and deposition of the films are detennined by the thermodynamic parameters of the target material and initial conditions such as electron temperature and density of the plasma.For optimizing the deposition parameters of various films (stoichiometric or otherwise), in-situ or ex-situ monitoring of plasma plume dynamics become necessary for the purpose of repeatability and reliability. With this in mind, the plume dynamics and compositions of laser ablated and RF magnetron sputtered zinc oxide plasmas have been investigated. The plasmas studied were produced at conditions employed typically for the deposition of ZnO films by both methods. Apart from this two component ZnO plasma, a multi-component material (lead zirconium titanate) was ablated and plasma was characterized.
Resumo:
This thesis Entitled Post-Environmental Evaluation of The Rajjaprabha Dam In Thailand. This post evaluation of environmental consequences of Rajjaprabha dam IS conducted ten years after its commencement. The Rajjaprabha dam project was planned and implemented as a multipurpose project, mainly for hydropower production, flood protection, fisheries, recreation and irrigation. The project includes the dam and reservoir with a 240 MW hydropower plant located about 90 km upstream from Surat Thani province, and irrigation systems covering the coastal plain in Surat Thani. The upstream storage reservoir (with about 5,639 mcm storage) and the hydropower plant had already been implemented. The first phase of irrigation system covers an area of 23,100 hectares. The second phase is envisaged to cover about 50,000 hectares. This study was conducted with the following objectives: (I) to assess all existing environmental resources and their values with the help of input-output analysis (2) to findout the beneficial impacts of the project (3) to evaluate the actual positive effects vis-a-vis the estimated effects before the project was implemented and (4) to identify all significant changes in relatives to the impacts previously assessed. The study area includes the Phum Duang river basin of about 4,668 km2 (placed on the areas that are upstream and downstream to the damsite), The duration of study is limited to 10 years after the dam has become operational i.e. from 1987-1997. The results of the study reveal that there is no significant changes in climatic and ground water resources, with respect to the study area inspte of the fact that the physical and chemical properties of the soil have slightly changed. Sedimentation in the reservoir does not have much effect on the function of the dam.
Resumo:
Des del seu descobriment, a la molècula C60 se li coneixen una varietat de derivats segons el tipus de funcionalització amb propietats fisicoquímiques específiques de gran interès científic. Una sel·lecció de derivats corresponents a addicions simple o múltiple al C60 s'ha considerat en aquest treball d'investigació. L'estudi a nivell de química computacional de diversos tipus d'addició al C60 s'han portat a terme per tal de poder donar resposta a aspectes que experimentalment no s'entenen o són poc clars. Els sistemes estudiats en referència a l'addició simple al C60 han estat en primer lloc els monoiminoful·lerens, C60NR, (de les dues vies proposades per la seva síntesi, anàlisis cinètic i termodinàmic han ajudat a explicar els mecanismes de formació i justificar l'addició a enllaços tipus [5,6]), i en segon lloc els metanoful·lerens i els hidroful·lerens substituits, C60CHR i C60HR, (raons geomètriques, electròniques, energètiques i magnètiques justifiquen el diferent caràcter àcid ente ambdós derivats tenint en compte una sèrie de substituents R amb diferent caràcter electrònic donor/acceptor). Els fluoroful·lerens, C60Fn, i els epoxid ful·lerens, C60On, (anàlisi sistemàtic dels seus patrons d'addició en base a poder justificar la força que els governa han aportat dades complementàries a les poques que existeixen experimentalment al respecte).
Resumo:
North African dust is important for climate through its direct radiative effect on solar and terrestrial radiation and its role in the biogeochemical system. The Dust Outflow and Deposition to the Ocean project (DODO) aimed to characterize the physical and optical properties of airborne North African dust in two seasons and to use these observations to constrain model simulations, with the ultimate aim of being able to quantify the deposition of iron to the North Atlantic Ocean. The in situ properties of dust from airborne campaigns measured during February and August 2006, based at Dakar, Senegal, are presented here. Average values of the single scattering albedo (0.99, 0.98), mass specific extinction (0.85 m^2 g^-1 , 1.14 m^2 g^-1 ), asymmetry parameter (0.68, 0.68), and refractive index (1.53--0.0005i,1.53--0.0014i) for the accumulation mode were found to differ by varying degrees between the dry and wet season, respectively. It is hypothesized that these differences are due to different source regions and transport processes which also differ between the DODO campaigns. Elemental ratios of Ca/Al were found to differ between the dry and wet season (1.1 and 0.5, respectively). Differences in vertical profiles are found between seasons and between land and ocean locations and reflect the different dynamics of the seasons. Using measurements of the coarse mode size distribution and illustrative Mie calculations, the optical properties are found to be very sensitive to the presence and amount of coarse mode of mineral dust, and the importance of accurate measurements of the coarse mode of dust is highlighted.
Resumo:
Trace elements may present an environmental hazard in the vicinity of mining and smelting activities. However, the factors controlling their distribution and transfer within the soil and vegetation systems are not always well defined. Total concentrations of up to 15,195 mg center dot kg (-1) As, 6,690 mg center dot kg(-1) Cu, 24,820 mg center dot kg(-1) Pb and 9,810 mg center dot kg(-1) Zn in soils, and 62 mg center dot kg(-1) As, 1,765 mg center dot kg(-1) Cu, 280 mg center dot kg(-1) Pb and 3,460 mg center dot kg (-1) Zn in vegetation were measured. However, unusually for smelters and mines of a similar size, the elevated trace element concentrations in soils were found to be restricted to the immediate vicinity of the mines and smelters (maximum 2-3 km). Parent material, prevailing wind direction, and soil physical and chemical characteristics were found to correlate poorly with the restricted trace element distributions in soils. Hypotheses are given for this unusual distribution: (1) the contaminated soils were removed by erosion or (2) mines and smelters released large heavy particles that could not have been transported long distances. Analyses of the accumulation of trace elements in vegetation (median ratios: As 0.06, Cu 0.19, Pb 0.54 and Zn 1.07) and the percentage of total trace elements being DTPA extractable in soils (median percentages: As 0.06%, Cu 15%, Pb 7% and Zn 4%) indicated higher relative trace element mobility in soils with low total concentrations than in soils with elevated concentrations.
Resumo:
We present a summary of the principal physical and optical properties of aerosol particles using the FAAM BAE-146 instrumented aircraft during ADRIEX between 27 August and 6 September 2004, augmented by sunphotometer, lidar and satellite retrievals. Observations of anthropogenic aerosol, principally from industrial sources, were concentrated over the northern Adriatic Sea and over the Po Valley close to the aerosol sources. An additional flight was also carried out over the Black Sea to compare east and west European pollution. Measurements show the single-scattering albedo of dry aerosol particles to vary considerably between 0.89 and 0.97 at a wavelength of 0.55 μm, with a campaign mean within the polluted lower free troposphere of 0.92. Although aerosol concentrations varied significantly from day to day and during individual days, the shape of the aerosol size distribution was relatively consistent through the experiment, with no detectable change observed over land and over sea. There is evidence to suggest that the pollution aerosol within the marine boundary layer was younger than that in the elevated layer. Trends in the aerosol volume distribution show consistency with multiple-site AERONET radiometric observations. The aerosol optical depths derived from aircraft measurements show a consistent bias to lower values than both the AERONET and lidar ground-based radiometric observations, differences which can be explained by local variations in the aerosol column loading and by some aircraft instrumental artefacts. Retrievals of the aerosol optical depth and fine-mode (<0.5 μm radius) fraction contribution to the optical depth using MODIS data from the Terra and Aqua satellites show a reasonable level of agreement with the AERONET and aircraft measurements.
Resumo:
Aerosols affect the Earth's energy budget directly by scattering and absorbing radiation and indirectly by acting as cloud condensation nuclei and, thereby, affecting cloud properties. However, large uncertainties exist in current estimates of aerosol forcing because of incomplete knowledge concerning the distribution and the physical and chemical properties of aerosols as well as aerosol-cloud interactions. In recent years, a great deal of effort has gone into improving measurements and datasets. It is thus feasible to shift the estimates of aerosol forcing from largely model-based to increasingly measurement-based. Our goal is to assess current observational capabilities and identify uncertainties in the aerosol direct forcing through comparisons of different methods with independent sources of uncertainties. Here we assess the aerosol optical depth (τ), direct radiative effect (DRE) by natural and anthropogenic aerosols, and direct climate forcing (DCF) by anthropogenic aerosols, focusing on satellite and ground-based measurements supplemented by global chemical transport model (CTM) simulations. The multi-spectral MODIS measures global distributions of aerosol optical depth (τ) on a daily scale, with a high accuracy of ±0.03±0.05τ over ocean. The annual average τ is about 0.14 over global ocean, of which about 21%±7% is contributed by human activities, as estimated by MODIS fine-mode fraction. The multi-angle MISR derives an annual average AOD of 0.23 over global land with an uncertainty of ~20% or ±0.05. These high-accuracy aerosol products and broadband flux measurements from CERES make it feasible to obtain observational constraints for the aerosol direct effect, especially over global the ocean. A number of measurement-based approaches estimate the clear-sky DRE (on solar radiation) at the top-of-atmosphere (TOA) to be about -5.5±0.2 Wm-2 (median ± standard error from various methods) over the global ocean. Accounting for thin cirrus contamination of the satellite derived aerosol field will reduce the TOA DRE to -5.0 Wm-2. Because of a lack of measurements of aerosol absorption and difficulty in characterizing land surface reflection, estimates of DRE over land and at the ocean surface are currently realized through a combination of satellite retrievals, surface measurements, and model simulations, and are less constrained. Over the oceans the surface DRE is estimated to be -8.8±0.7 Wm-2. Over land, an integration of satellite retrievals and model simulations derives a DRE of -4.9±0.7 Wm-2 and -11.8±1.9 Wm-2 at the TOA and surface, respectively. CTM simulations derive a wide range of DRE estimates that on average are smaller than the measurement-based DRE by about 30-40%, even after accounting for thin cirrus and cloud contamination. A number of issues remain. Current estimates of the aerosol direct effect over land are poorly constrained. Uncertainties of DRE estimates are also larger on regional scales than on a global scale and large discrepancies exist between different approaches. The characterization of aerosol absorption and vertical distribution remains challenging. The aerosol direct effect in the thermal infrared range and in cloudy conditions remains relatively unexplored and quite uncertain, because of a lack of global systematic aerosol vertical profile measurements. A coordinated research strategy needs to be developed for integration and assimilation of satellite measurements into models to constrain model simulations. Enhanced measurement capabilities in the next few years and high-level scientific cooperation will further advance our knowledge.
Resumo:
Com o objetivo de avaliar as relações entre formas de paisagem e erosão em um Latossolo Vermelho eutroférrico (LVef) por meio de técnicas geoestatísticas na Fazenda Santa Isabel, município de Jaboticabal (SP), identificaram-se modelos de paisagem côncavo e linear. Coletaram-se amostras de solo em ambas as formas de paisagem em uma malha regular espaçada de 50 x 50 m em sete transeções na profundidade de 0,00-0,20 m, totalizando 412 pontos em 93 ha. Determinou-se a erodibilidade dos solos pelo método indireto, granulometria, bem como o carbono orgânico para cada ponto da malha, sendo esses valores usados na estimativa do potencial natural de erosão (pne). Os dados obtidos das propriedades de solo, erodibilidade e potencial natural de erosão foram analisados por meio de estatística descritiva e geoestatística com a modelagem de semivariogramas, sendo este utilizado para a confecção de mapas de krigagem. Segundo os resultados, as propriedades do solo e do pne apresentaram maior variabilidade espacial na pedoforma côncava, apesar de esta forma de paisagem apresentar menores perdas de solo por erosão e menor variabilidade espacial da erodibilidade. Deste modo, conclui-se que a erosão não adicionou variabilidade espacial para as propriedades do solo na mesma magnitude do relevo.
Resumo:
One of needs of modern agriculture is the prediction of spatial variability of soil properties at more detailed scales for sustainable management and optimization of management practices. The mathematical model associated with knowledge of variability of soil attributes and mapping of relief forms has helped in agricultural planning. In this regard the aim of this study was to characterize the spatial variability of physical and chemical properties of Oxisols and Ultisols using numerical classification and the digital elevation model. Two distinct landforms: convex for the Oxisol (158 ha) and linear for the Ultisol (172 ha). 53 samples from the Oxisol and 57 samples from the Ultisol were taken. Multivariate analysis of clusters of attributes studied from their euclidean distances was performed. This analysis by dendograms along with digital elevation models for different soils characterized was more homogeneous in Ultisol groups, and less homogeneous for the Oxisol in convex landform. These quantitative methods showed that the landforms conditioned the spatial pattern of soil attributes.
Resumo:
Boron adsorption by soil is the main phenomenon that affects its availability to plants. This, the present study investigated the effect of liming on B adsorption by lowland soils of Parana State, and to correlate these values with the physical and chemical properties of the soils. Surface samples of three lowland soils [Gleissolo Haplico (GX), Plintossolo Haplico (FX) and Cambissolo Haplico (CX)], with different origin material and physicochemical properties were used. Samples with or without liming application were incubated during 60 days. Boron adsorption was accomplished by shaking 4.0g soil samples, for 24 h, with 20 mL of 0.01 mol L-1 CaCl2 solution containing different concentrations of B (0, 1, 2, 4, 8 and 16 mg L-1). Sorption was fitted to non-linear form of the Langmuir adsorption isotherm. The adsorption isotherms indicated that the B adsorption increased with its increasing concentration in the equilibrium solution. Maximum adsorption capacity of B ranged from 3.0 to 13.9 mg kg(-1) (without liming) and 14.7 to 35.7 mg kg(-1) (with liming). Liming increased the amount of adsorbed B in Gleissolo Haplico and Plintossolo Haplico soils, although the bonding energy has decreased. The amount of adsorbed B by Cambissolo Haplico soil was not affected by liming application. The most important soil properties affecting the B adsorption in lowland soils were pH, clay content, exchangeable aluminum and iron oxide contents.