914 resultados para site-specific mutagenesis
Resumo:
The aim was to examine the functional importance in the norepinephrine transporter (NET) of (i) the phenylalanine residue at position 531 in transmembrane domain (TMD) 11 by mutating it to tyrosine in the rat (rF531Y) and human (hF531Y) NETs and (ii) the highly conserved tyrosine residues at positions 249 in TMD 4 of human NET (hNET) (mutated to alanine: hY249A) and 271 in TMD 5, by mutating to alanine (hY271A), phenylalanine (hY271F) and histidine (hY271H). The effects of the mutations on NET function were for uptake of the substrates, examined by expressing the mutant and wildtype NETs in COS-7 cells and measuring the K-m and V-max for uptake of the substrates, [H-3]norepinephrine, [H-3]MPP+ and [H-3]dopamine, the K-D and B-max for [H-3]nisoxetine binding and the K-i of the inhibitors, nisoxetine, desipramine and cocaine, for inhibition of [H-3]norepinephrine uptake. The K-m values of the substrates were lower for the mutants at amino acid 271 than hNET and unaffected for the other mutants, and each mutant had a significantly lower than NET for substrate uptake. The mutations at position 271 caused an increase in the K-i or K-D values of nisoxetine, desipramine and cocaine, but there were no effects for the other mutations. Hence, the 271 tyrosine residue in TMD 5 is an important determinant of NET function, with the mutants showing an increase in the apparent affinities of substrates and a decrease in the apparent affinities of inhibitors, but the 249 tyrosine and 531 phenylalanine residues do not have a major role in determining NET function. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
ATM, the gene mutated in the human immunodeficiency disorder ataxia-telangiectasia (A-T), plays a central role in recognizing ionizing radiation damage in DNA and in controlling several cell cycle checkpoints. We describe here a murine model in which a nine-nucleotide in-frame deletion has been introduced into the Atm gene by homologous recombination followed by removal of the selectable marker cassette by Cre-loxP site-specific, recombination-mediated excision. This mouse, Abm-Delta SRI, was designed as a model of one of the most common deletion mutations (7636de19) found in A-T patients. The murine Atm deletion results in the loss of three amino acid residues (SRI; 2556-2558) but produces near full-length detectable Atm protein that lacks protein kinase activity. Radiosensitivity was observed in Atm-Delta SRI mice, whereas the immunological profile of these mice showed greater heterogeneity of T-cell subsets than observed in Atm(-/-) mice. The life span of Atm-Delta SRI mice was significantly longer than that of Atm(-/-) mice when maintained under nonspecific pathogen-free conditions. This can be accounted for by a lower incidence of thymic lymphomas in Atm-Delta SRI mice up to 40 weeks, after which time the animals died of other causes. The thymic lymphomas in Atm-Delta SRI mice were characterized by extensive apoptosis, which appears to be attributable to an increased number of cells expressing Fas ligand. A variety of other tumors including B-cell lymphomas, sarcomas, and carcinomas not seen in Atm(-/-) mice were observed in older Atm-Delta SRI animals. Thus, expression of mutant protein in Atm-Delta SRI knock-in mice gives rise to a discernibly different phenotype to Atm(-/-) mice, which may account for the heterogeneity seen in A-T patients with different mutations.
Resumo:
The effects of the antihelmintic, ivermectin, were investigated in recombinantly expressed human alpha (1) homomeric and alpha (1)beta heteromeric glycine receptors (GlyRs), At low (0.03 muM) concentrations ivermectin potentiated the response to sub-saturating glycine concentrations, and at higher (greater than or equal to0.03 muM) concentrations it irreversibly activated both alpha (1) homomeric and alpha (1)beta heteromeric GlyRs. Relative to glycine-gated currents, ivermectin-gated currents exhibited a dramatically reduced sensitivity to inhibition by strychnine, picrotoxin, and zinc. The insensitivity to strychnine could not be explained by ivermectin preventing the access of strychnine to its binding site. Furthermore, the elimination of a known glycine- and strychnine-binding site by site-directed mutagenesis had little effect on ivermectin sensitivity, demonstrating that the ivermectin- and glycine-binding sites were not identical. Ivermectin strongly and irreversibly activated a fast-desensitizing mutant GlyR after it had been completely desensitized by a saturating concentration of glycine. Finally, a mutation known to impair dramatically the glycine signal transduction mechanism had little effect on the apparent affinity or efficacy of ivermectin, Together, these findings indicate that ivermectin activates the GlyR by a novel mechanism.
Resumo:
Background: Asthma medication places patients at risk of dental erosion by reducing salivary protection against extrinsic or intrinsic acids. But patterns of lesions in asthmatics may differ from patterns in non-asthmatics, because gastro-oesophageal reflux (GOR) is found in 60 per cent of asthmatics. Methods: The lesions in 44 asthma cases were compared to those of age and sex match controls with no history of asthma or medications drawn from the dental records of 423 patients referred concerning excessive tooth wear. The subjects were 70 males age range 15 to 55 years and 18 females age range 18 to 45. Anamnestic clinical data were compared between the two groups. Models of all 88 subjects were examined by light microscopy, and wear patterns were recorded on permanent central incisor, canine, premolar and first molar teeth. Results: Clinical differences were a higher incidence of tooth hypersensitivity; xerostomia, salivary gland abnormalities, gastric complaints, and self induced vomiting in the cases. No differences were found between the cases and controls on citrus fruit and acid soft drink consumption. More occlusal erosion sites were found in cases, whereas more attrition sites were found in the controls. There were no significant differences in palatal erosion on maxillary anterior teeth found between cases and controls. Lingual erosion of the mandibular incisors, found only in GOR patients, was not observed. Conclusions: A higher incidence of erosion was found in asthmatics. Gastro-oesophageal reflux symptoms were not associated with the sign of lingual mandibular incisor erosion. The clinical significance is that asthmatics are at risk of dental erosion from extrinsic acid, but GOR does not appear to contribute in a site-specific manner.
Resumo:
Acetohydroxyacid synthase (AHAS; EC 4.1.3.18) catalyzes the first step in branched-chain amino acid biosynthesis. The enzyme requires thiamin diphosphate and FAD for activity, but the latter is unexpected, because the reaction involves no oxidation or reduction. Due to its presence in plants, AHAS is a target for sulfonylurea and imidazolinone herbicides. Here, the crystal structure to 2.6 A resolution of the catalytic subunit of yeast AHAS is reported. The active site is located at the dimer interface and is near the proposed herbicide-binding site. The conformation of FAD and its position in the active site are defined. The structure of AHAS provides a starting point for the rational design of new herbicides. (C) 2002 Elsevier Science Ltd.
Resumo:
Background: Tissue Doppler may be used to quantify regional left ventricular function but is limited by segmental variation of longitudinal velocity from base to apex and free to septal walls. We sought to overcome this by developing a composite of longitudinal and radial velocities. Methods and Results. We examined 82 unselected patients undergoing a standard dobutamine echocardiogram. Longitudinal velocity was obtained in the basal and mid segments of each wall using tissue Doppler in the apical views. Radial velocities were derived in the same segments using an automated border detection system and centerline method with regional chords grouped according to segment location and temporally averaged. In 25 patients at low probability of coronary disease, the pattern of regional variation in longitudinal velocity (higher in the septum) was the opposite of radial velocity (higher in the free wall) and the combination was homogenous. In 57 patients undergoing angiography, velocity in abnormal segments was less than normal segments using longitudinal (6.0 +/- 3.6 vs 9.0 +/- 2.2 cm/s, P = .01) and radial velocity (6.0 +/- 4.0 vs 8.0 +/- 3.9 cm/s, P = .02). However, the composite velocity permitted better separation of abnormal and normal segments (13.3 +/- 5.6 vs 17.5 +/- 4.2 cm/s, P = .001). There was no significant difference between the accuracy of this quantitative approach and expert visual wall motion analysis (81% vs 84%, P = .56). Conclusion: Regional variation of uni-dimensional myocardial velocities necessitates site-specific normal ranges, probably because of different fiber directions. Combined analysis of longitudinal and radial velocities allows the derivation of a composite velocity, which is homogenous in all segments and may allow better separation of normal and abnormal myocardium.
Resumo:
Dimethyl sulphide dehydrogenase catalyses the oxidation of dimethyl sulphide to dimethyl sulphoxide (DMSO) during photoautotrophic growth of Rhodovulum sulfidophilum . Dimethyl sulphide dehydrogenase was shown to contain bis (molybdopterin guanine dinucleotide)Mo, the form of the pterin molybdenum cofactor unique to enzymes of the DMSO reductase family. Sequence analysis of the ddh gene cluster showed that the ddhA gene encodes a polypeptide with highest sequence similarity to the molybdop-terin-containing subunits of selenate reductase, ethylbenzene dehydrogenase. These polypeptides form a distinct clade within the DMSO reductase family. Further sequence analysis of the ddh gene cluster identified three genes, ddhB , ddhD and ddhC . DdhB showed sequence homology to NarH, suggesting that it contains multiple iron-sulphur clusters. Analysis of the N-terminal signal sequence of DdhA suggests that it is secreted via the Tat secretory system in complex with DdhB, whereas DdhC is probably secreted via a Sec-dependent mechanism. Analysis of a ddhA mutant showed that dimethyl sulphide dehydrogenase was essential for photolithotrophic growth of Rv. sulfidophilum on dimethyl sulphide but not for chemo-trophic growth on the same substrate. Mutational analysis showed that cytochrome c (2) mediated photosynthetic electron transfer from dimethyl sulphide dehydrogenase to the photochemical reaction centre, although this cytochrome was not essential for photoheterotrophic growth of the bacterium.
Resumo:
The phototrophic purple non-sulfur bacterium Rhodobacter capsulatus expresses a wide variety of complex redox proteins in response to changing environmental conditions. Here we report the construction and evaluation of an expression system for recombinant proteins in that organism which makes use of the dor promoter from the same organism. A generic expression vector, pDorEX, was constructed and used to express sulphite:cytochrome c oxidoreductase from Starkeya novella, a heterodimeric protein containing both molybdenum and haem c. The recombinant protein was secreted to the periplasm and its biochemical properties were very similar to those of the native enzyme. The pDorEX system therefore seems to be potentially useful for heterologous expression of multi-subunit proteins containing complex redox cofactors. (C) 2002 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved.
Resumo:
The widespread adoption of soil conservation technologies by farmers (notably contour hedgerows) observed in Guba, Cebu City, Philippines, is not often observed elsewhere In the country. Adoption of these technologies was because of the interaction of such phenomena as site-specific factors, appropriate extension systems, and technologies. However, lack of hedgerow maintenance, decreasing hedgerow quality, and disappearance of hedgerows raised concerns about sustainability. The dynamic nature of upland farming systems suggests the need for a location-specific farming system development framework, which provides farmers with ongoing extension for continual promotion of appropriate conservation practices.
Resumo:
It has been suggested from a previous study in our laboratory that differences in the pharmacology of the species variants of the noradrenaline transporter (NET) are the result of four non-conservative amino acid exchanges from the total of 26 amino acids that are divergent between the rat NET (rNET) and human NET (hNET). The aim of this study was to examine the effects of changing the rNET at each of these four amino acid residues, which markedly alter local charge distribution, to the amino acid found in hNET. Site-directed mutagenesis was used to create mutant cDNAs from rNET cDNA. The mutant NETs (rK71), rE62K, rK375N and rR612Q), rNET and hNET were expressed in transiently transfected COS-7 cells to determine the effects of the mutations on the differing pharmacological properties of the species variants. The ratios of V-max for noradrenaline uptake and B-max for nisoxetine binding (which are a measure of the turnover number of the transporter, i.e. the number of transport cycles per min) were greater for rNET and rR612Q than for hNET, rK71), rE62K and rK375N. The K-m of noradrenaline was lower for hNET, rK713, rE62K and rK375N than for rNET or rR612Q. There were no differences between the K-i values for inhibition of noradrenaline uptake by nisoxetine for rNET, hNET or the mutants, but the K-i values of cocaine were lower for hNET, rE62K and rR612Q than rNET or rK375N. Hence, the study showed that: (1) the aspartate 7. lysine 62 and asparagine 375 amino acid residues are important in determining the lower substrate translocation by hNET than rNET; (2) the aspartate 7 and lysine 62 residues in the N-terminus of hNET determine the higher affinities of substrates for the hNET than the rNET; and (3) the lysine 62 and glutamine 612 residues in the N- and C-termini, respectively, of hNET Lire determinants of the higher cocaine affinity for the hNET than rNET.
Resumo:
The aim of the study was to investigate the role of glutamate residue 113 in transmembrane domain 2 of the human noradrenaline transporter in determining cell surface expression and functional activity. This residue is absolutely conserved in all members of the Na+- and Cl--dependent transporter family. Mutations to alanine (hE113A), aspartate (hE113D) and glutamine (hE113Q) were achieved by site-directed mutagenesis and the mutants were expressed in transfected COS-7 or HEK-293 cells. Cell surface expression of IIE113A and hE113D, but not hE113Q, was markedly reduced compared with wild type, and functional noradrenaline uptake was detected only for the hE113Q mutant. The pharmacological properties of the hE113Q mutant showed very little change compared with wild type, except for a decrease in V-max values for noradrenaline and dopamine uptake of 2-3-fold. However, the hE113D mutant showed very marked changes in its properties, compared with wild type, with 82-260-fold decreases in the affinities of the substrates, noradrenaline, dopamine and MPP+, and increased Na+ affinity for stimulation of nisoxetine binding. The results of the study show that the size and not the charge of the 113 glutamate residue of the noradrenaline transporter seems to be the most critical factor for maintenance of transporter function and surface expression.
Resumo:
Highly conserved motifs in the monoamine transporters, e.g. the human norepinephrine transporter (hNET) GXXXRXG motif which was the focus of the present study, are likely to be important structural features in determining function. This motif was investigated by mutating the glycines to glutamate (causing loss of function) and alanine, and the arginine to glycine. The effects of hG117A, hR121G and hG123A mutations on function were examined in COS-7 cells and compared to hNET. Substrate K-m values were decreased for hG117A and hG123A, and their K values for inhibition of [3 H]nisoxetine binding were decreased 3-4-fold and 4-6-fold, respectively. Transporter turnover was reduced to 65% of hNET for hG117A and hR121G and to 28% for hG123A, suggesting that substrate translocation is impaired. K values of nisoxetine and desipramine for inhibition of [H-3]norepinephrine uptake were increased by 5-fold for hG117A, with no change for cocaine. The K-i value of cocaine was increased by 3-fold for hG123A, with no change for nisoxetine and desipramine. However, there were no effects of the mutations on the K-d of [H-3]nisoxetine binding or K-i values of desipramine or cocaine for inhibition of [H-3]nisoxetine binding. Hence, glycine residues of the GXXXRXG motif are important determinants of NET expression and function, while the arginine residue does not have a major role. This study also showed that antidepressants and psychostimulants have different NET binding sites and provided the first evidence that different sites on the NET are involved in the binding of inhibitors and their competitive inhibition of substrate uptake. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Sulfotransferases (SULTs) catalyse the sulfonation of both endogenous and exogenous compounds including hormones, catecholamines. drugs and xenobiotics. While in most occasions, sulfonation is a detoxication pathway. in the case of certain drugs and carcinogens. it leads to metabolic activation. Since, the rabbit has been extensively used for both pharmacological and toxicological studies, the purpose of this study was to further characterise the sulfotransferase system of this animal. In the present study, a novel sulfotransferase isoform (GenBank Accession no. AF360872) was isolated from a rabbit liver cDNA lambdaZAP 11 library. The full-length sequence of the clone was 1138 bp long and contained a coding region of 888 bp encoding a cytosolic protein of 295 amino acids (deduced molecular weight 34,193 Da). The amino acid sequence of this novel SULT isoform showed >70% identity with members of the SULT1A subfamily of sulfotransferases from other species. Upon expression of the encoded rabbit sulfotransferase in Escherchia coli (E. coli), it was shown that the enzyme was capable of sulfonating both p-nitrophenot (K-m and V-max values of 0.15 muM and 897.5 nmol/min/mg protein. respectively) and dopamine (K-m and V-max values of 175.3 muM and 151.1 nmol/min/mg protein, respectively). Based on the sequence data obtained and substrate specificity, this new rabbit sulfotransferase was named rabSULT1A1. Immunoblotting was used to demonstrate that rabSULT1A1 protein is expressed in liver, duodenum, jejunum, ileum, colon and recturm. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Background: Some melanomas form on sun-exposed body sites, whereas others do not. We previously proposed that melanomas at different body sites arise through different pathways that have different associations with melanocytic nevi and solar keratoses. We tested this hypothesis in a case-case comparative study of melanoma patients in Queensland, Australia. Methods: We randomly selected patients from among three prespecified groups reported to the population-based Queensland Cancer Registry: those with superficial spreading or nodular melanomas of the trunk (n = 154, the reference group), those with such melanomas of the head and neck (n = 77, the main comparison group), and those with lentigo maligna melanoma (LMM) (n = 75, the chronic sun-exposed group). Each participant completed a questionnaire, and a research nurse counted melanocytic nevi and solar keratoses. We calculated exposure odds ratios (ORs) and 95% confidence intervals (CIs) to quantify the association between factors of interest and each melanoma group. Results: Patients with head and neck melanomas, compared with patients with melanomas of the trunk, were statistically significantly less likely to have more than 60 nevi (OR = 0.34, 95% CI = 0.15 to 0.79) but were statistically significantly more likely to have more than 20 solar keratoses (OR = 3.61, 95% CI = 1.42 to 9.17) and also tended to have a past history of excised solar skin lesions (OR = 1.87, 95% CI = 0.89 to 3.92). Patients with LMM were also less likely than patients with truncal melanomas to have more than 60 nevi (OR = 0.32, 95% CI = 0.14 to 0.75) and tended toward more solar keratoses (OR = 2.14, 95% CI = 0.88 to 5.16). Conclusions: Prevalences of nevi and solar keratoses differ markedly between patients with head and neck melanomas or LMM and patients with melanomas of the trunk. Cutaneous melanomas may arise through two pathways, one associated with melanocyte proliferation and the other with chronic exposure to sunlight.
Resumo:
Expression of metallothionein, an antioxidant induced by a variety of stimuli including ultraviolet light, was quantitated by immunohistochemistry in the skin of males aged over 50 who had known short- and long-term exposures to sunlight. Skin punch biopsies were taken from two sites in each subject: the hand in all subjects and a range of other sites matched to patients with a previously excised primary melanoma. Metallothionein expression (strongest in the basal layers of the epidermis and primarily nuclear) was associated with both short- and long-term exposure to sunlight. A plateau of staining intensity was reached after 3 h sun exposure, within the previous 3 d before biopsy. Expression was also elevated in the nonexposed skin sites of subjects who had recent sun exposure, indicating a systemic response to exposure of remote sites. Using the skin of the hand to normalize responses to chronic exposure between individuals, the systemically modulated response to sunlight was significantly greater on the unexposed back than on other sites. The possibility of ultraviolet-induced cytokines selectively modifying the response of skin on a site-specific basis was investigated. The circulating leukocytes, but not lymphocytes, of two individuals exposed to 1 minimal erythema dose whole-body solar-simulated ultraviolet showed increased interleukin-6 mRNA 4 h after exposure. Interleukin-6 was not directly induced in these cell populations 4 h after ultraviolet A or ultraviolet B irradiation ex vivo . Leukocytes may therefore contribute to and amplify the systemic effects of ultraviolet-induced interleukin-6 and metallothionein expression.